chiniofon and ubiquinol

chiniofon has been researched along with ubiquinol* in 7 studies

Other Studies

7 other study(ies) available for chiniofon and ubiquinol

ArticleYear
The quinone-binding sites of the cytochrome bo3 ubiquinol oxidase from Escherichia coli.
    Biochimica et biophysica acta, 2010, Volume: 1797, Issue:12

    Cytochrome bo(3) is the major respiratory oxidase located in the cytoplasmic membrane of Escherichia coli when grown under high oxygen tension. The enzyme catalyzes the 2-electron oxidation of ubiquinol-8 and the 4-electron reduction of dioxygen to water. When solubilized and isolated using dodecylmaltoside, the enzyme contains one equivalent of ubiquinone-8, bound at a high affinity site (Q(H)). The quinone bound at the Q(H) site can form a stable semiquinone, and the amino acid residues which hydrogen bond to the semiquinone have been identified. In the current work, it is shown that the tightly bound ubiquinone-8 at the Q(H) site is not displaced by ubiquinol-1 even during enzyme turnover. Furthermore, the presence of high affinity inhibitors, HQNO and aurachin C1-10, does not displace ubiquinone-8 from the Q(H) site. The data clearly support the existence of a second binding site for ubiquinone, the Q(L) site, which can rapidly exchange with the substrate pool. HQNO is shown to bind to a single site on the enzyme and to prevent formation of the stable ubisemiquinone, though without displacing the bound quinone. Inhibition of the steady state kinetics of the enzyme indicates that aurachin C1-10 may compete for binding with quinol at the Q(L) site while, at the same time, preventing formation of the ubisemiquinone at the Q(H) site. It is suggested that the two quinone binding sites may be adjacent to each other or partially overlap.

    Topics: Binding Sites; Binding, Competitive; Cytochrome b Group; Cytochromes; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Models, Biological; Molecular Structure; Mutagenesis, Site-Directed; Mutation; Oxidation-Reduction; Oxidoreductases; Oxygen; Protein Binding; Quinolones; Quinones; Substrate Specificity; Ubiquinone

2010
Existence of aa3-type ubiquinol oxidase as a terminal oxidase in sulfite oxidation of Acidithiobacillus thiooxidans.
    Bioscience, biotechnology, and biochemistry, 2006, Volume: 70, Issue:7

    It was found that Acidithiobacillus thiooxidans has sulfite:ubiquinone oxidoreductase and ubiquinol oxidase activities in the cells. Ubiquinol oxidase was purified from plasma membranes of strain NB1-3 in a nearly homogeneous state. A purified enzyme showed absorption peaks at 419 and 595 nm in the oxidized form and at 442 and 605 nm in the reduced form. Pyridine ferrohaemochrome prepared from the enzyme showed an alpha-peak characteristic of haem a at 587 nm, indicating that the enzyme contains haem a as a component. The CO difference spectrum of ubiquinol oxidase showed two peaks at 428 nm and 595 nm, and a trough at 446 nm, suggesting the existence of an aa(3)-type cytochrome in the enzyme. Ubiquinol oxidase was composed of three subunits with apparent molecular masses of 57 kDa, 34 kDa, and 23 kDa. The optimum pH and temperature for ubiquinol oxidation were pH 6.0 and 30 degrees C. The activity was completely inhibited by sodium cyanide at 1.0 mM. In contrast, the activity was inhibited weakly by antimycin A(1) and myxothiazol, which are inhibitors of mitochondrial bc(1) complex. Quinone analog 2-heptyl-4-hydoroxyquinoline N-oxide (HOQNO) strongly inhibited ubiquinol oxidase activity. Nickel and tungstate (0.1 mM), which are used as a bacteriostatic agent for A. thiooxidans-dependent concrete corrosion, inhibited ubiquinol oxidase activity 100 and 70% respectively.

    Topics: Acidithiobacillus thiooxidans; Antimycin A; Cell Membrane; Electron Transport Complex IV; Heme; Hydrogen-Ion Concentration; Hydroxyquinolines; Methacrylates; Nickel; Oxidation-Reduction; Oxidoreductases; Protein Subunits; Sodium Cyanide; Sulfites; Thiazoles; Tungsten Compounds; Ubiquinone

2006
Structural and biochemical characterization of a quinol binding site of Escherichia coli nitrate reductase A.
    The Journal of biological chemistry, 2005, Apr-15, Volume: 280, Issue:15

    The crystal structure of Escherichia coli nitrate reductase A (NarGHI) in complex with pentachlorophenol has been determined to 2.0 A of resolution. We have shown that pentachlorophenol is a potent inhibitor of quinol:nitrate oxidoreductase activity and that it also perturbs the EPR spectrum of one of the hemes located in the membrane anchoring subunit (NarI). This new structural information together with site-directed mutagenesis data, biochemical analyses, and molecular modeling provide the first molecular characterization of a quinol binding and oxidation site (Q-site) in NarGHI. A possible proton conduction pathway linked to electron transfer reactions has also been defined, providing fundamental atomic details of ubiquinol oxidation by NarGHI at the bacterial membrane.

    Topics: Binding Sites; Cell Membrane; Crystallography, X-Ray; Dose-Response Relationship, Drug; Electron Spin Resonance Spectroscopy; Escherichia coli; Heme; Histidine; Hydroxyquinolines; Kinetics; Lysine; Models, Chemical; Models, Molecular; Mutation; Naphthols; Nitrate Reductase; Nitrate Reductases; Oxidoreductases; Oxygen; Pentachlorophenol; Plasmids; Protein Binding; Protons; Terpenes; Ubiquinone

2005
Uncompetitive substrate inhibition and noncompetitive inhibition by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) and 2-n-nonyl-4-hydroxyquinoline-N-oxide (NQNO) is observed for the cytochrome bo3 complex: implications for a Q(H2)-loop proton trans
    Biochemistry, 1997, Jan-28, Volume: 36, Issue:4

    The cytochrome bo3 ubiquinol oxidase complex from Escherichia coli contains two binding sites for ubiquinone(ol) (UQ(H2)). One of these binding sites, the ubiquinol oxidation site, is clearly in dynamic equilibrium with the UQ(H2) pool in the membrane. The second site has a high affinity for ubiquinone (UQ), stabilizes a semiquinone species, and is located physically close to the low-spin heme b component of the enzyme. The UQ molecule in this site has been proposed to remain strongly bound to the enzyme during enzyme turnover and to act as a cofactor facilitating the transfer of electrons from the substrate ubiquinol to heme b [Sato-Watanabe et al. (1994) J. Biol. Chem. 269, 28908-28912]. In this paper, the steady-state turnover of the enzyme is examined in the presence and absence of inhibitors (UHDBT and NQNO) that appear to be recognized as ubisemiquinone analogs. It is found that the kinetics are accounted for best by a noncompetitive inhibitor binding model. Furthermore, at high concentrations, the substrates ubiquinol-1 and ubiquinol-2 inhibit turnover in an uncompetitive fashion. Together, these observations strongly suggest that there must be at least two UQ(H2) binding sites that are in rapid equilibrium with the UQ(H2) pool under turnover conditions. Although these data do not rule out the possibility that a strongly bound UQ molecule functions to facilitate electron transfer to heme b, they are more consistent with the behavior expected if the two UQ(H2) binding sites were to function in a Q(H2)-loop mechanism (similar to that of the cytochrome bc1 complex) as originally proposed by Musser and co-workers [(1993) FEBS Lett. 327, 131-136]. In this model, ubiquinol is oxidized at one site and ubiquinone is reduced at the second site. While the structural similarities of the heme-copper ubiquinol and cytochrome c oxidase complexes suggest the possibility that these two families of enzymes translocate protons by similar mechanisms, the current observations indicate that the Q(H2)-loop proton translocation mechanism for the heme-copper ubiquinol oxidase complexes should be further investigated and experimentally tested.

    Topics: Binding Sites; Binding, Competitive; Cytochrome b Group; Cytochromes; Electron Transport; Energy Metabolism; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Models, Chemical; Molecular Structure; Protons; Thiazoles; Ubiquinone

1997
Oxidation of ubiquinol by cytochrome bo3 from Escherichia coli: kinetics of electron and proton transfer.
    Biochemistry, 1997, May-06, Volume: 36, Issue:18

    In this study we have used the so-called flow-flash technique to investigate electron and proton transfer during the reaction between cytochrome bo3 with bound ubiquinol (QH2) and dioxygen. The results are compared to those from the well-characterized mitochondrial cytochrome alpha alpha3. Qualitatively, the same type of absorbance changes associated with electron transfer were observed in both enzymes whereas the protonation reactions were markedly different. In the bacterial QH2-bound enzyme, three kinetic phases with time constants of approximately 45 micros, approximately 700 micros, and approximately 4 ms associated with electron-transfer reactions were observed. The first phase is attributed to oxidation of hemes b and o3 and formation of the "peroxy" intermediate. The second and third phases were not observed after addition of the herbicide HQNO, which displaces QH2 from its binding site. They are attributed to electron transfer from QH2 to heme b and from heme b to the binuclear center, respectively. In both enzymes, the initial electron transfer was followed by a slower uptake of 0.9 +/- 0.3 proton per enzyme molecule (tau approximately 90 micros), previously attributed to protonation of a group near the binuclear center. Only in the bacterial enzyme, the second electron-transfer reaction was accompanied by a net release of 1.1 +/- 0.3 H+, which is attributed to proton release during oxidation of QH2. It was followed by a slower uptake of 1.2 +/- 0.4 H+ during transfer of the fourth electron to the binuclear center. The two slowest protonation reactions were not observed in the presence of HQNO.

    Topics: Bacterial Proteins; Cytochrome b Group; Cytochromes; Electron Spin Resonance Spectroscopy; Electron Transport; Escherichia coli; Escherichia coli Proteins; Hydroxyquinolines; Kinetics; Oxidation-Reduction; Oxygen; Protons; Ubiquinone

1997
Characterization of a quinole-oxidase activity in crude extracts of Thermoplasma acidophilum and isolation of an 18-kDa cytochrome.
    European journal of biochemistry, 1991, Aug-15, Volume: 200, Issue:1

    A quinol-oxidase activity was detected in crude extracts of the thermoacidophilic archaebacterium Thermoplasma acidophilum. The activity was optimal at pH 5.4 and 50 degrees C. The Km for ubiquinol-10 was 18 microM. The enzyme was inhibited by 2n-heptyl-4-hydroxyquinoline N-oxide with a Ki of 150 nM. Ubiquinols with different side-chain lengths were oxidized at similar rates, whereas menaquinols were converted at 6-12-fold higher rates compared to ubiquinols. Membranes from T. acidophilum contain cytochromes of b, d and a1 types, as shown by optical spectroscopy. CO difference spectroscopy suggests the existence of a cytochrome o. A b-type cytochrome with an apparent molecular mass of 18 kDa was purified in the presence of high detergent concentrations. It readily forms dimers on SDS/PAGE. This cytochrome also contains Cu, as shown by atomic-absorption spectroscopy. Redox titration suggests that the 18-kDa cytochrome may contain 2 heme groups; b558 with a midpoint potential of 75 mV and b562/553 with a midpoint potential of -150 mV.

    Topics: Chromatography, Gel; Chromatography, High Pressure Liquid; Cytochrome b Group; Electrophoresis, Polyacrylamide Gel; Enzyme Stability; Hydrogen-Ion Concentration; Hydroxyquinolines; Kinetics; Molecular Weight; Oxidoreductases; Substrate Specificity; Temperature; Thermoplasma; Ubiquinone; Vitamin K; Vitamin K 2

1991
The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex.
    European journal of biochemistry, 1990, Nov-26, Volume: 194, Issue:1

    The involvement of cytochromes in the electron-transport pathway to the periplasmic NO3- reductase of Rhodobacter capsulatus was studied in cells grown photoheterotrophically in the presence of nitrate with butyrate as carbon source. The specific rate of NO3- reduction by such cells was five times higher than when malate was carbon source. Reduced minus NO3(-)-oxidized spectra of cells had peaks in the alpha-band region for cytochromes at 552 nm and 559 nm, indicating the involvement of c- and b-type cytochromes in the electron-transport pathway to NO3-. The total ferricyanide-oxidizable cytochrome that was also oxidized in the steady state by NO3- was greater in cells grown with butyrate rather than malate. Low concentrations of cyanide inhibited NO3- reduction. Neither CN-, nor a previously characterized inhibitor of NO3- reduction, 2-n-heptyl-4-hydroxyquinoline N-oxide, prevented the oxidation of the cytochromes by NO3-. This suggested a site of action for these inhibitors on the reducing side of the b- and c-type cytochromes involved in electron transport to the NO3- reductase. The predominant cytochrome in a periplasmic fraction prepared from cells of R. capsulatus grown on butyrate medium was cytochrome c2 but a c-type cytochrome with an alpha-band reduced absorbance maximum at 552 nm could also be identified. The reduced form of this latter cytochrome, but not that of cytochrome c2, was oxidized upon addition of NO3- to a periplasmic fraction. The NO3(-)-oxidizable cytochrome co-purified with the periplasmic NO3- reductase through fractionation procedures that included ammonium sulphate precipitation, gel filtration at low and high salt concentrations, and ion-exchange chromatography. A NO3(-)-reductase-cytochrome-c552 redox complex that comprised two types of polypeptide, a nitrate reductase subunit and a c-type cytochrome subunit, was purified. The polypeptides were separated when the complex was chromatographed on a phenyl-Sepharose hydrophobic chromatography column.

    Topics: Cell Fractionation; Cyanides; Cytochrome c Group; Electron Transport; Hydroxyquinolines; Macromolecular Substances; Nitrate Reductase; Nitrate Reductases; Nitrates; Oxidation-Reduction; Rhodobacter capsulatus; Spectrum Analysis; Ubiquinone

1990