chiniofon and cyclopropane

chiniofon has been researched along with cyclopropane* in 1 studies

Other Studies

1 other study(ies) available for chiniofon and cyclopropane

ArticleYear
Synthesis and antimycobacterial evaluation of newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids.
    Bioorganic & medicinal chemistry, 2008, Mar-01, Volume: 16, Issue:5

    Thirty-four newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids were synthesized from 1,2,3,4-tetrafluoro benzene and evaluated for in vitro and in vivo antimycobacterial activities against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant M. tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC(2)) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase. Among the synthesized compounds, 7-(1-(4-methoxybenzyl)-3,4,5,6,7,8-hexahydroisoquinolin-2(1H)-yl)-1-cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-5-nitro-4-oxoquinoline-3-carboxylic acid (13n) was found to be the most active compound in vitro with MIC of 0.16 and 0.33 microM against MTB and MDR-TB, respectively. In the in vivo animal model 13n decreased the bacterial load in lung and spleen tissues with 2.54 and 2.92-log10 protections, respectively, at the dose of 50mg/kg body weight. Compound 13n also inhibited the supercoiling activity of mycobacterial DNA gyrase with IC(50) of 30.0 microg/ml.

    Topics: Amination; Animals; Anti-Bacterial Agents; Cell Survival; Chlorocebus aethiops; Cyclopropanes; DNA Gyrase; Fluorine Compounds; Hydroxyquinolines; Molecular Structure; Mycobacterium; Photosensitizing Agents; Structure-Activity Relationship; Topoisomerase II Inhibitors; Vero Cells

2008