chabazite has been researched along with clinoptilolite* in 2 studies
2 other study(ies) available for chabazite and clinoptilolite
Article | Year |
---|---|
Recycling nitrogen from liquid digestate via novel reactive struvite and zeolite minerals to mitigate agricultural pollution.
Recycling nutrients is of paramount importance. For this reason, struvite and nitrogen enriched zeolite fertilizers produced from wastewater treatments are receiving growing attention in European markets. However, their effects on agricultural soils are far from certain, especially struvite, which only recently was implemented in EU Fertilizing Product Regulations. In this paper, we investigate the effects of these materials in acid sandy arable soil, particularly focusing on N dynamics, evaluating potential losses, transformation pathways, and the effects of struvite and zeolitic tuffs on main soil biogeochemical parameters, in comparison to traditional fertilization with digestate. Liming effect (pH alkalinization) was observed in all treatments with varying intensities, affecting most of the soil processes. The struvite was quickly solubilized due to soil acidity, and the release of nutrients stimulated nitrifying and denitrifying microorganisms. Zeolitic tuff amendments decreased the NO Topics: Agriculture; Fertilizers; Nitrogen; Nitrous Oxide; Soil; Struvite; Zeolites | 2023 |
Ammonium and potassium removal from swine liquid manure using clinoptilolite, chabazite and faujasite zeolites.
This study concerns cationic exchanges performed in order to remove ammonium and potassium cations from manure by using various zeolites: clinoptilolite, chabazite and NaX faujasite. First, the effect of temperature (25 °C and 40 °C) on the exchange rate between zeolites and an ammonium chloride solution was investigated. Then, cationic exchanges were performed on these three zeolites using on one side a mixed ammonium and potassium chloride solution reproducing the chemical composition of a swine manure and on the other side the corresponding liquid manure. No significant difference was observed on the exchange rate and the trapping of ammonium cations by changing the temperature (25 or 40 °C). Clinoptilolite showed a good selectivity towards ammonium cations using model (NH4Cl, and mixed NH4Cl/KCl) solutions but is less efficient with the liquid manure. Chabazite and faujasite were found more efficient than clinoptilolite for trapping ammonium cations. However, NaX faujasite enables trapping 3 times more ammonium cations than chabazite from manure (60 and 20 mg/g, respectively). Moreover, chabazite allowed to trap the same amount of potassium cations than NaX faujasite (33 and 35 mg/g, respectively). Topics: Ammonium Chloride; Ammonium Compounds; Animals; Cations; Manure; Potassium; Solutions; Sus scrofa; Temperature; Waste Disposal, Fluid; Zeolites | 2016 |