cgp-56697 has been researched along with efavirenz* in 9 studies
4 trial(s) available for cgp-56697 and efavirenz
Article | Year |
---|---|
Artemether-lumefantrine efficacy among adults on antiretroviral therapy in Malawi.
When people with human immunodeficiency virus (HIV) infection (PWH) develop malaria, they are at risk of poor anti-malarial treatment efficacy resulting from impairment in the immune response and/or drug-drug interactions that alter anti-malarial metabolism. The therapeutic efficacy of artemether-lumefantrine was evaluated in a cohort of PWH on antiretroviral therapy (ART) and included measurement of day 7 lumefantrine levels in a subset to evaluate for associations between lumefantrine exposure and treatment response.. Adults living with HIV (≥ 18 years), on ART for ≥ 6 months with undetectable HIV RNA viral load and CD4 count ≥ 250/mm. 411 malaria episodes were observed among 186 participants over 5 years. The unadjusted ACPR rate was 81% (95% CI 77-86). However, after PCR correction to exclude new infections, ACPR rate was 94% (95% CI 92-97). Increasing age and living in Ndirande were associated with decreased hazard of treatment failure. In this population of adults with HIV on ART, 54% (51/94) had levels below a previously defined optimal day 7 lumefantrine level of 200 ng/ml. This occurred more commonly among participants who were receiving an efavirenz-based ART compared to other ART regimens (OR 5.09 [95% CI 1.52-7.9]). Participants who experienced treatment failure had lower day 7 median lumefantrine levels (91 ng/ml [95% CI 48-231]) than participants who experienced ACPR (190 ng/ml [95% CI 101-378], p-value < 0.008).. Recurrent malaria infections are frequent in this population of PWH on ART. The PCR-adjusted efficacy of AL meets the WHO criteria for acceptable treatment efficacy. Nevertheless, lumefantrine levels tend to be low in this population, particularly in those on efavirenz-based regimens, with lower concentrations associated with more frequent malaria infections following treatment. These results highlight the importance of understanding drug-drug interactions when diseases commonly co-occur. Topics: Adult; Antimalarials; Artemether; Artemether, Lumefantrine Drug Combination; Artemisinins; Drug Combinations; Ethanolamines; Fluorenes; HIV Infections; Humans; Lumefantrine; Malaria; Malaria, Falciparum; Malawi; Treatment Outcome | 2023 |
Efficacy and safety of artemether-lumefantrine as treatment for Plasmodium falciparum uncomplicated malaria in adult patients on efavirenz-based antiretroviral therapy in Zambia: an open label non-randomized interventional trial.
HIV-infected individuals on antiretroviral therapy (ART) require treatment with artemisinin-based combination therapy (ACT) when infected with malaria. Artemether-lumefantrine (AL) is the most commonly used ACT for treatment of falciparum malaria in Africa but there is limited evidence on the safety and efficacy of AL in HIV-infected individuals on ART, among whom drug-drug interactions are expected. Day-42 adequate clinical and parasitological response (ACPR) and incidence of adverse events was assessed in HIV-infected individuals on efavirenz-based ART with uncomplicated falciparum malaria treated with AL.. A prospective, open label, non-randomized, interventional clinical trial was conducted at St Paul's Hospital in northern Zambia, involving 152 patients aged 15-65 years with uncomplicated falciparum malaria, who were on efavirenz-based ART. They received a 3-day directly observed standard treatment of AL and were followed up until day 63. Day-42 polymerase chain reaction (PCR)-corrected ACPRs (95% confidence interval [CI]) were calculated for the intention-to-treat population.. Enrolled patients had a baseline geometric mean (95% CI) parasite density of 1108 (841-1463) parasites/µL; 16.4% (25/152) of the participants had a recurrent malaria episode by day 42. However, PCR data was available for 17 out of the 25 patients who had malaria recurrence. Among all the 17 patients, PCR findings demonstrated malaria re-infection, making the PCR-adjusted day-42 ACPR 100% in the 144 patients who could be evaluated. Even when eight patients with missing PCR data were considered very conservatively as failures, the day-42 ACPR was over 94%. None of the participants, disease or treatment characteristics, including day-7 lumefantrine concentrations, predicted the risk of malaria recurrence by day 42. AL was well tolerated following administration. There were only two cases of grade 3 neutropaenia and one serious adverse event of lobar pneumonia, none of which was judged as probably related to intake of AL.. AL was well tolerated and efficacious in treating uncomplicated falciparum malaria in HIV co-infected adults on efavirenz-based ART. However, a higher than anticipated proportion of participants experienced malaria re-infection, which highlights the need for additional malaria prevention measures in this sub-population after treatment with AL. Trial registration Pan African Clinical Trials Registry (PACTR): PACTR201311000659400. Registered on 4 October 2013. https://pactr.samrc.ac.za/Search.aspx. Topics: Adolescent; Adult; Aged; Alkynes; Antimalarials; Artemether, Lumefantrine Drug Combination; Benzoxazines; Cyclopropanes; Female; HIV Infections; Humans; Malaria, Falciparum; Male; Middle Aged; Plasmodium falciparum; Polymerase Chain Reaction; Prospective Studies; Reverse Transcriptase Inhibitors; Young Adult; Zambia | 2019 |
Significant pharmacokinetic interactions between artemether/lumefantrine and efavirenz or nevirapine in HIV-infected Ugandan adults.
Co-administration of artemether/lumefantrine with antiretroviral therapy has potential for pharmacokinetic drug interactions. We investigated drug-drug interactions between artemether/lumefantrine and efavirenz or nevirapine.. We performed a cross-over study in which HIV-infected adults received standard six-dose artemether/lumefantrine 80/480 mg before and at efavirenz or nevirapine steady state. Artemether, dihydroartemisinin, lumefantrine, efavirenz and nevirapine plasma concentrations were measured and compared.. Efavirenz significantly reduced artemether maximum concentration (C(max)) and plasma AUC (median 29 versus 12 ng/mL, P < 0.01, and 119 versus 25 ng · h/mL, P < 0.01), dihydroartemisinin C(max) and AUC (median 120 versus 26 ng/mL, P < 0.01, and 341 versus 84 ng · h/mL, P < 0.01), and lumefantrine C(max) and AUC (median 8737 versus 6331 ng/mL, P = 0.03, and 280 370 versus 124 381 ng · h/mL, P < 0.01). Nevirapine significantly reduced artemether C(max) and AUC (median 28 versus 11 ng/mL, P < 0.01, and 123 versus 34 ng · h/mL, P < 0.01) and dihydroartemisinin C(max) and AUC (median 107 versus 59 ng/mL, P < 0.01, and 364 versus 228 ng · h/mL, P < 0.01). Lumefantrine C(max) and AUC were non-significantly reduced by nevirapine. Artemether/lumefantrine reduced nevirapine C(max) and AUC (median 8620 versus 4958 ng/mL, P < 0.01, and 66 329 versus 35 728 ng · h/mL, P < 0.01), but did not affect efavirenz exposure.. Co-administration of artemether/lumefantrine with efavirenz or nevirapine resulted in a reduction in artemether, dihydroartemisinin, lumefantrine and nevirapine exposure. These drug interactions may increase the risk of malaria treatment failure and development of resistance to artemether/lumefantrine and nevirapine. Clinical data from population pharmacokinetic and pharmacodynamic trials evaluating the impact of these drug interactions are urgently needed. Topics: Adult; Alkynes; Anti-HIV Agents; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Benzoxazines; Cross-Over Studies; Cyclopropanes; Drug Combinations; Drug Interactions; Ethanolamines; Female; Fluorenes; HIV Infections; Humans; Malaria; Male; Nevirapine; Plasma; Uganda | 2012 |
Concomitant efavirenz reduces pharmacokinetic exposure to the antimalarial drug artemether-lumefantrine in healthy volunteers.
The antiretroviral drug efavirenz (EFV) and the antimalarial artemisinin-based combination therapy artemether-lumefantrine (AL) are commonly co-administered to treat HIV and malaria. EFV is a known inducer of cytochrome P450 3A4, which converts artemether to dihydroartemisinin (DHA) that is also active and metabolizes longer acting lumefantrine (LR). A study in healthy volunteers was completed to address the concern that EFV impacts AL pharmacokinetics (PKs).. Adults received AL (80/480 mg twice daily) for 3-days before and during EFV co-administration (600 mg daily for 26 days) with intensive PK for artemether, DHA, and LR conducted after the last AL dose for each period. EFV PK was evaluated with and without AL. PK parameters were estimated using noncompartmental methods.. Twelve subjects completed the 2-period study. PK exposure for artemether, DHA, and LR [as estimated by the area under the concentration time curve (AUClast)] decreased or trended toward decrease with EFV, compared with when administered alone [-51% (P = 0.084), -46% (P = 0.005), and -21% (P = 0.102), respectively]. Day-7 LR levels, previously deemed predictive of treatment success, were 46% lower (P = 0.002) with EFV, but the LR half-life was unchanged. EFV PK exposure was minimally altered after AL co-administration [AUC0-24 hrs decreased by 17% (P = 0.034)].. Exposure to DHA, but not LR, was significantly lower during EFV-AL co-administration compared with that during administration of AL alone. These findings may have implications for the treatment efficacy of AL, particularly in children. However, the observed modest changes probably do not warrant dosage adjustment during co-administration of AL with EFV. Topics: Adult; Alkynes; Anti-HIV Agents; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Benzoxazines; Cross-Over Studies; Cyclopropanes; Drug Combinations; Drug Interactions; Ethanolamines; Female; Fluorenes; Humans; Male; Middle Aged; Young Adult | 2012 |
5 other study(ies) available for cgp-56697 and efavirenz
Article | Year |
---|---|
Impact of Drug Exposure on Resistance Selection Following Artemether-Lumefantrine Treatment for Malaria in Children With and Without HIV in Uganda.
Artemisinin-based combination therapies (ACTs) are the primary treatment for malaria. It is essential to characterize the pharmacokinetics (PKs) and pharmacodynamics (PDs) of ACTs in vulnerable populations at risk of suboptimal dosing. We developed a population PK/PD model using data from our previous study of artemether-lumefantrine in HIV-uninfected and HIV-infected children living in a high-transmission region of Uganda. HIV-infected children were on efavirenz-, nevirapine-, or lopinavir-ritonavir-based antiretroviral regimens, with daily trimethoprim-sulfamethoxazole prophylaxis. We assessed selection for resistance in two key parasite transporters, pfcrt and pfmdr1, over 42-day follow-up and incorporated genotyping into a time-to-event model to ascertain how resistance genotype in relation to drug exposure impacts recurrence risk. Two hundred seventy-seven children contributed 364 episodes to the model (186 HIV-uninfected and 178 HIV-infected), with recurrent microscopy-detectable parasitemia detected in 176 episodes by day 42. The final model was a two-compartment model with first-order absorption and an estimated age effect on bioavailability. Systemic lumefantrine exposure was highest with lopinavir-ritonavir, lowest with efavirenz, and equivalent with nevirapine and HIV-uninfected children. HIV status and lumefantrine concentration were significant factors associated with recurrence risk. Significant selection was demonstrated for pfmdr1 N86 and pfcrt K76 in recurrent infections, with no evidence of selection for pfmdr1 Y184F. Less sensitive parasites were able to tolerate lumefantrine concentrations ~ 3.5-fold higher than more sensitive parasites. This is the first population PK model of lumefantrine in HIV-infected children and demonstrates selection for reduced lumefantrine susceptibility, a concern as we confront the threat to ACTs posed by emerging artemisinin resistance in Africa. Topics: Antimalarials; Artemether; Artemether, Lumefantrine Drug Combination; Artemisinins; Child; Drug Combinations; Fluorenes; HIV Infections; Humans; Lopinavir; Lumefantrine; Malaria; Malaria, Falciparum; Nevirapine; Ritonavir; Uganda | 2023 |
Efavirenz-Based Antiretroviral Therapy Reduces Artemether-Lumefantrine Exposure for Malaria Treatment in HIV-Infected Pregnant Women.
The choice of malaria treatment for HIV-infected pregnant women receiving efavirenz-based antiretroviral therapy must consider the potential impact of drug interactions on antimalarial exposure and clinical response. The aim of this study was to investigate the effects of efavirenz on artemether-lumefantrine (AL) because no studies have isolated the impact of efavirenz for HIV-infected pregnant women.. A prospective clinical pharmacokinetic (PK) study compared HIV-infected, efavirenz-treated pregnant women with HIV-uninfected pregnant women in Tororo, Uganda. All women received the standard 6-dose AL treatment regimen for Plasmodium falciparum malaria with intensive PK samples collected over 21 days and 42-days of clinical follow-up. PK exposure parameters were calculated for artemether, its active metabolite dihydroartemisinin (DHA), and lumefantrine to determine the impact of efavirenz.. Nine HIV-infected and 30 HIV-uninfected pregnant women completed intensive PK evaluations. Relative to controls, concomitant efavirenz therapy lowered the 8-hour artemether concentration by 76% (P = 0.013), DHA peak concentration by 46% (P = 0.033), and day 7 and 14 lumefantrine concentration by 61% and 81% (P = 0.046 and 0.023), respectively. In addition, there were nonsignificant reductions in DHA area under the concentration-time curve0-8hr (35%, P = 0.057) and lumefantrine area under the concentration-time curve0-∞ (34%, P = 0.063) with efavirenz therapy.. Pregnant HIV-infected women receiving efavirenz-based antiretroviral therapy during malaria treatment with AL showed reduced exposure to both the artemisinin and lumefantrine. These data suggest that malaria and HIV coinfected pregnant women may require adjustments in AL dosage or treatment duration to achieve exposure comparable with HIV-uninfected pregnant women. Topics: Adolescent; Adult; Alkynes; Anti-HIV Agents; Anti-Retroviral Agents; Antimalarials; Artemether; Artemether, Lumefantrine Drug Combination; Artemisinins; Benzoxazines; Cyclopropanes; Drug Combinations; Drug Interactions; Female; HIV Infections; Humans; Lumefantrine; Malaria; Malaria, Falciparum; Pregnancy; Prospective Studies; Uganda; Young Adult | 2020 |
Influence of selected polymorphisms in disposition genes on lumefantrine pharmacokinetics when coadministered with efavirenz.
Coadministration of artemether-lumefantrine and efavirenz has been shown to result in significant interactions. The influence of functional genetic polymorphisms in selected CYPs on the magnitude of this interaction was investigated in pregnant and nonpregnant adults.. A standard 3-day regimen of artemether-lumefantrine was administered to each patient on steady-state efavirenz-based antiretroviral therapy (ART). Pharmacokinetic parameters were obtained from intensive plasma concentration-time data. Genotyping data were tested for compliance with Hardy-Weinberg equilibrium by Chi-square test. Linear regressions, Mann-Whitney U-test or Kruskal-Wallis tests were conducted to examine the association of lumefantrine plasma level with CYP2B6 c.516G>T, NR1I3 152c-1089T>C, CYP2B6 c.983T>C, CYP3A5*3 and CYP3A4*22.. Among a total of 69 malaria-HIV coinfected patients (34 nonpregnant and 35 pregnant), median (interquartile range) age was 33 (27-36.5) years and body weight was 59.5 (50-67.5) kg. In nonpregnant group, CYP2B6 c.516G>T was significantly associated with lower log Cday 7 of lumefantrine using multivariate linear regressions (β = -0.239; P = 0.013). In 59% of women with CYP2B6 c.516T, Cday 7 of lumefantrine was below the target of 280 ng/mL compared to 47% in the noncarriers. CYP2B6 c.983T>C significantly associated with higher log Cday 7 of desbutyl lumefantrine in both pregnant (β = 0.383; P = 0.033) and nonpregnant (β = 0.395; P = 0.023) groups. Composite genotypes for both CYP2B6 Single-nucleotide polymorphisms strongly associated with lumefantrine plasma concentration. An associative trend between lumefantrine pharmacokinetics and NR1I3 152c-1089T>C genotypes indicated that 70% of the Cday 7 of lumefantrine in those with NR1I3 152c-1089TT genotype was below 280 ng/mL compared to 53% in those with NR1I3 152c-1089CC or CT genotype.. The findings revealed that the efavirenz-lumefantrine interaction was accentuated in the group with CYP2B6 c.516T, c.983C and NR1I3 152c-1089T alleles. This warrants further investigations of other drug-drug interactions for optimising dosing in genetically defined subgroups, particularly during drug development. Topics: Adult; Alkynes; Artemether, Lumefantrine Drug Combination; Benzoxazines; Case-Control Studies; Constitutive Androstane Receptor; Cyclopropanes; Cytochrome P-450 CYP2B6; Cytochrome P-450 CYP3A; Cytochrome P-450 Enzyme System; Female; Genotyping Techniques; HIV Infections; Humans; Malaria; Polymorphism, Single Nucleotide; Pregnancy; Receptors, Cytoplasmic and Nuclear; Treatment Outcome | 2020 |
Effect of nevirapine, efavirenz and lopinavir/ritonavir on the therapeutic concentration and toxicity of lumefantrine in people living with HIV at Lagos University Teaching Hospital, Nigeria.
Patients living with HIV in malarial endemic regions may experience clinically significant drug interaction between antiretroviral and antimalarial drugs. Effects of nevirapine (NVP), efavirenz (EFV) and lopinavir/ritonavir (LPVr) on lumefantrine (LM) therapeutic concentrations and toxicity were evaluated. In a four-arm parallel study design, the blood samples of 40 participants, treated with artemether/lumefantrine (AL), were analysed. Lumefantrine Cmax was increased by 32% (p = 0.012) and 325% (p < 0.0001) in the NVP and LPVr arms respectively but decreased by 62% (p < 0.0001) in the EFV-arm. AUC of LM was, respectively, increased by 50% (p = 0.27) and 328% (p < 0.0001) in the NVP and LPVr arms but decreased in the EFV-arm by 30% (p = 0.019). Median day 7 LM concentration was less than 280 ng/mL in EFV-arm (239 ng/mL) but higher in control (290 ng/mL), NVP (369 ng/mL, p = 0.004) and LPVr (1331 ng/mL, p < 0.0001) arms. There were no clinically relevant toxicities nor adverse events in both control and test arms. Artemether/lumefantrine is safe and effective for treatment of malaria in PLWHA taking NVP and LPVr based ART regimen but not EFV-based regimen. Topics: Adult; Alkynes; Anti-Retroviral Agents; Antimalarials; Artemether, Lumefantrine Drug Combination; Benzoxazines; Cyclopropanes; Drug Combinations; Drug Interactions; Drug Therapy, Combination; Female; HIV Infections; Humans; Lopinavir; Malaria; Male; Middle Aged; Nevirapine; Nigeria; Ritonavir; Treatment Outcome; Young Adult | 2020 |
Outcome of artemether-lumefantrine treatment for uncomplicated malaria in HIV-infected adult patients on anti-retroviral therapy.
Malaria and HIV infections are both highly prevalent in sub-Saharan Africa, with HIV-infected patients being at higher risks of acquiring malaria. The majority of antiretroviral (ART) and anti-malarial drugs are metabolized by the CYP450 system, creating a chance of drug-drug interaction upon co-administration. Limited data are available on the effectiveness of the artemether-lumefantrine combination (AL) when co-administered with non-nucleoside reverse transcriptase inhibitors (NNRTIs). The aim of this study was to compare anti-malarial treatment responses between HIV-1 infected patients on either nevirapine- or efavirenz-based treatment and those not yet on ART (control-arm) with uncomplicated falciparum malaria, treated with AL.. This was a prospective, non-randomized, open-label study conducted in Bagamoyo district, with three arms of HIV-infected adults: efavirenz-based treatment arm (EFV-arm) n = 66, nevirapine-based treatment arm (NVP-arm) n = 128, and control-arm n = 75, with uncomplicated malaria. All patients were treated with AL and followed up for 28 days. The primary outcome measure was an adequate clinical and parasitological response (ACPR) after treatment with AL by day 28.. Day 28 ACPR was 97.6%, 82.5% and 94.5% for the NVP-arm, EFV-arm and control-arm, respectively. No early treatment or late parasitological failure was reported. The cumulative risk of recurrent parasitaemia was >19-fold higher in the EFV-arm than in the control-arm (Hazard ratio [HR], 19.11 [95% confidence interval {CI}, 10.5-34.5]; P < 0.01). The cumulative risk of recurrent parasitaemia in the NVP-arm was not significantly higher than in the control-arm ([HR], 2.44 [95% {CI}, 0.79-7.6]; P = 0.53). The median (IQR) day 7 plasma concentrations of lumefantrine for the three arms were: 1,125 ng/m (638.8-1913), 300.4 ng/ml (220.8-343.1) and 970 ng/ml (562.1-1729) for the NVP-arm, the EFV-arm and the control-arm, respectively (P < 0.001). In all three arms, the reported adverse events were mostly mild.. After 28 days of follow-up, AL was statistically safe and effective in the treatment of uncomplicated malaria in the NVP-arm. The results of this study also provide an indication of the possible impact of EFV on the performance of AL and the likelihood of it affecting uncomplicated falciparum malaria treatment outcome. Topics: Adult; Africa South of the Sahara; Aged; Alkynes; Anti-Retroviral Agents; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Benzoxazines; Cyclopropanes; Drug Combinations; Drug Interactions; Ethanolamines; Female; Fluorenes; HIV Infections; Humans; Malaria; Male; Middle Aged; Nevirapine; Prospective Studies; Treatment Outcome; Young Adult | 2014 |