cgp-56697 and desethylamodiaquine

cgp-56697 has been researched along with desethylamodiaquine* in 3 studies

Trials

3 trial(s) available for cgp-56697 and desethylamodiaquine

ArticleYear
In vivo/ex vivo efficacy of artemether-lumefantrine and artesunate-amodiaquine as first-line treatment for uncomplicated falciparum malaria in children: an open label randomized controlled trial in Burkina Faso.
    Malaria journal, 2020, Jan-06, Volume: 19, Issue:1

    Artemisinin-based combination therapy (ACT) is recommended to improve malaria treatment efficacy and limit drug-resistant parasites selection in malaria endemic areas. 5 years after they were adopted, the efficacy and safety of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ), the first-line treatments for uncomplicated malaria were assessed in Burkina Faso.. In total, 440 children with uncomplicated Plasmodium falciparum malaria were randomized to receive either AL or ASAQ for 3 days and were followed up weekly for 42 days. Blood samples were collected to investigate the ex vivo susceptibility of P. falciparum isolates to lumefantrine, dihydroartemisinin (the active metabolite of artemisinin derivatives) and monodesethylamodiaquine (the active metabolite of amodiaquine). The modified isotopic micro test technique was used to determine the 50% inhibitory concentration (IC50) values. Primary endpoints were the risks of treatment failure at days 42.. Out of the 440 patients enrolled, 420 (95.5%) completed the 42 days follow up. The results showed a significantly higher PCR unadjusted cure rate in ASAQ arm (71.0%) than that in the AL arm (49.8%) on day 42, and this trend was similar after correction by PCR, with ASAQ performing better (98.1%) than AL (91.1%). Overall adverse events incidence was low and not significantly different between the two treatment arms. Ex vivo results showed that 6.4% P. falciparum isolates were resistant to monodesthylamodiaquine. The coupled in vivo/ex vivo analysis showed increased IC50 values for lumefantrine and monodesethylamodiaquine at day of recurrent parasitaemia compared to baseline values while for artesunate, IC50 values remained stable at baseline and after treatment failure (p > 0.05).. These findings provide substantial evidence that AL and ASAQ are highly efficacious for the treatment of uncomplicated malaria in children in Burkina Faso. However, the result of P. falciparum susceptibility to the partner drugs advocates the need to regularly replicate such surveillance studies. This would be particularly indicated when amodiaquine is associated in seasonal malaria chemoprophylaxis (SMC) mass drug administration in children under 5 years in Burkina Faso. Trial registration clinicaltrials, NCT00808951. Registered 05 December 2008,https://clinicaltrials.gov/ct2/show/NCT00808951?cond=NCT00808951&rank=1.

    Topics: Adolescent; Amodiaquine; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Artesunate; Burkina Faso; Child; Child, Preschool; Drug Combinations; Drug Therapy, Combination; Female; Humans; Infant; Inhibitory Concentration 50; Lumefantrine; Malaria, Falciparum; Male; Mass Drug Administration; Plasmodium falciparum; Treatment Failure; Treatment Outcome

2020
Electrocardiographic study in Ghanaian children with uncomplicated malaria, treated with artesunate-amodiaquine or artemether-lumefantrine.
    Malaria journal, 2012, Dec-17, Volume: 11

    Several anti-malarial drugs are associated with adverse cardiovascular effects. These effects may be exacerbated when different anti-malarials are used in combination. There has been no report yet on the potential cardiac effects of the combination artesunate-amodiaquine.. Electrocardiographic (ECG) intervals in Ghanaian children with uncomplicated malaria treated with artesunate-amodiaquine (n=47), were compared with that of children treated with artemether-lumefantrine (n=30). The ECG measurements were repeated one, two, three, seven and 28 days after treatment. The ECG intervals of artesunate-amodiaquine treated subjects were correlated with plasma concentrations of desethylamodiaquine (DEAQ), the main metabolite of amodiaquine.. The mean ECG intervals were similar in both groups before treatment. After treatment (day 3), ECG intervals changed significantly from baseline in all subjects, but there were no differences between the two treatment groups. A significantly higher proportion of children treated with artesunate-amodiaquine developed sinus bradycardia compared with artemether-lumefantrine treated subjects (7/47 vs 0/30; χ² p=0.03). Subjects who developed bradycardia were significantly older, and had higher DEAQ concentrations than those who did not develop bradycardia. The proportion of subjects with QTc interval prolongations did not differ significantly between the groups, and no relationship between prolonged QTc intervals and DEAQ levels were observed. No clinically significant rhythm disturbances were observed in any of the subjects.. Artesunate-amodiaquine treatment resulted in a higher incidence of sinus bradycardia than artemether-lumefantrine treatment in children with uncomplicated malaria, but no clinically significant rhythm disturbances were induced by combining artesunate with amodiaquine. These findings, although reassuring, may imply that non-amodiaquine based artemisinin combination therapy may be preferable for malaria treatment in patients who are otherwise at risk of cardiac effects.

    Topics: Adolescent; Amodiaquine; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Bradycardia; Child; Child, Preschool; Drug Combinations; Electrocardiography; Ethanolamines; Female; Fluorenes; Ghana; Humans; Infant; Malaria; Male; Risk Factors

2012
Selection of parasites with diminished drug susceptibility by amodiaquine-containing antimalarial regimens in Uganda.
    The Journal of infectious diseases, 2009, Dec-01, Volume: 200, Issue:11

    Amodiaquine (AQ) is paired with artesunate (AS) or sulfadoxine-pyrimethamine (SP) in recommended antimalarial regimens. It is unclear how readily AQ resistance will be selected with combination chemotherapy.. We collected 61 Plasmodium falciparum samples from a cohort of Ugandan children randomized for treatment with AQ-SP, AS-AQ, or artemether-lumefantrine (AL) for uncomplicated malaria. In vitro susceptibility to monodesethylamodiaquine (MDAQ) was measured with a histidine-rich protein 2-based enzyme-linked immunosorbent assay, and potential resistance-mediating polymorphisms in pfmdr1 were evaluated.. Parasites collected from patients treated with AQ-SP or AS-AQ within the prior 12 weeks were less susceptible to MDAQ (n = 18; mean of the median inhibitory concentration [IC(50)], 62.9 nmol/L; range, 12.7-158.3 nmol/L) than were parasites from those not treated within 12 weeks (n = 43; mean IC(50), 37.5 nmol/L; range, 6.3-184.7 nmol/L; P=.009) or only from those patients in the treatment arm that did not receive AQ (n = 12; mean IC(50), 28.8 nmol/L; range, 6.3-121.8 nmol/L; P = .004). The proportion of strains with polymorphisms expected to mediate diminished response to AQ (pfmdr1 86Y and 1246Y) increased after AQ therapy, although differences were not statistically significant.. Prior therapy selected for diminished response to MDAQ, which suggests that AQ-containing regimens may rapidly lose efficacy in Africa. The mechanism of diminished MDAQ response is not fully explained by known mutations in pfmdr1.

    Topics: Amino Acid Sequence; Amodiaquine; Antimalarials; Artemether, Lumefantrine Drug Combination; Artemisinins; Artesunate; Child; Child, Preschool; Cohort Studies; Drug Combinations; Drug Resistance; Ethanolamines; Fluorenes; Humans; Infant; Malaria, Falciparum; Molecular Sequence Data; Multidrug Resistance-Associated Proteins; Plasmodium falciparum; Polymorphism, Genetic; Pyrimethamine; Sequence Alignment; Sulfadoxine; Uganda

2009