cereulide has been researched along with deoxynivalenol* in 2 studies
2 other study(ies) available for cereulide and deoxynivalenol
Article | Year |
---|---|
Assessing Mixture Effects of Cereulide and Deoxynivalenol on Intestinal Barrier Integrity and Uptake in Differentiated Human Caco-2 Cells.
The human intestine is regularly exposed to ingested food contaminants, such as fungal and bacterial toxins, which have been described to co-occur in a mixed diet. Thus, it is of utmost importance to understand possible interactions between contaminants of different origin. Hence, we investigated the single and combined effects of one of the most abundant mycotoxins, deoxynivalenol (DON; 0.1 to 10 µg/mL), and the bacterial toxin cereulide (CER; 1 to 100 ng/mL) on differentiated human Caco-2 (C2BBe1) cells cultured in a transwell system. We tested the capacity of the two toxins to alter the intestinal integrity and further investigated the uptake of both compounds and the formation of selected DON metabolites. CER alone (10 and 100 ng/mL) and in combination with DON (10 ng/mL CER with 1 µg/mL DON) was found to alter the barrier function by increasing the transepithelial electrical resistance and the expression of the tight junction protein claudin-4. For the first time, DON-3-sulfate was identified as a metabolite of human intestinal cells in vitro. Moreover, co-incubation of CER and DON led to an altered ratio between DON and DON-3-sulfate. Hence, we conclude that co-exposure to CER and DON may alter the intestinal barrier function and biotransformation of intestinal cells. Topics: Biotransformation; Caco-2 Cells; Cell Differentiation; Claudin-4; Depsipeptides; Electric Impedance; Epithelial Cells; Humans; Intestinal Absorption; Intestinal Mucosa; Permeability; Tight Junctions; Trichothecenes | 2021 |
Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells.
Deoxynivalenol (DON), one of the most abundant mycotoxins in cereal products, was recently detected with other mycotoxins and the emetic bacterial toxin cereulide (CER) in maize porridge. Within a cereal-based diet, co-exposure to these toxins is likely, hence raising the question of combinatory toxicological effects. While the toxicological evaluation of DON has quite progressed, consequences of chronic, low-dose CER exposure are still insufficiently explored. Information about the combinatory toxicological effects of these toxins is lacking. In the present study, we investigated how CER (0.1-100 ng/mL) and DON (0.01-10 µg/mL) alone and in a constant ratio of 1:100 (CER:DON) affect the cytotoxicity and immune response of differentiated human intestinal Caco-2 cells. While DON alone reduced cell viability only in the highest concentration (10 µg/mL), CER caused severe cytotoxicity upon prolonged incubation (starting from 10 ng/mL after 24 h and 48 h, 2.5 ng/mL and higher after 72 h). After 72 h, synergistic effects were observed at 2.5 ng/mL CER and 0.25 µg/mL DON. Different endpoints of inflammation were investigated in interleukin-1β-stimulated Caco-2 cells. Notably, DON-induced interleukin-8 transcription and secretion were diminished by the presence of 10 and 25 ng/mL CER after short-term (5 h) incubation, indicating immunosuppressive properties. We hypothesise that habitual consumption of cereal-based foods co-contaminated with CER and DON may cause synergistic cytotoxic effects and an altered immune response in the human intestine. Therefore, further research concerning effects of co-occurring bacterial toxins and mycotoxins on the impairment of intestinal barrier integrity, intestinal inflammation and the promotion of malnutrition is needed. Topics: Caco-2 Cells; Cell Survival; Depsipeptides; Diet; Emetics; Food Contamination; Humans; Inflammation; Interleukin-1beta; Interleukin-8; Intestinal Mucosa; Intestines; Mycotoxins; Trichothecenes | 2020 |