cephalosporin c has been researched along with phenylalanine in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 2 (20.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (50.00) | 29.6817 |
2010's | 2 (20.00) | 24.3611 |
2020's | 1 (10.00) | 2.80 |
Authors | Studies |
---|---|
Pestka, S | 1 |
Pollock, MR | 1 |
Carenbauer, AL; Crowder, MW; Garrity, JD; Periyannan, G; Yates, RB | 1 |
Hirano, T; Iseki, K; Itagaki, S; Kobayashi, M; Kubo, S; Otsuka, Y; Saito, Y; Yamamoto, Y | 1 |
Hirano, T; Iseki, K; Itagaki, S; Kobayashi, M; Saito, Y | 1 |
Hirano, T; Iseki, K; Itagaki, S; Kobayashi, M; Kubo, S; Saito, Y | 1 |
Fujita, T; Kumagai, Y; Kuroyama, S; Maeda, M; Majima, M; Nakamura, K; Nakamura, T; Nomura, K; Ohtani, Y; Ozaki, M; Sahashi, K; Shichijo, K; Yamazaki, A; Yokota, S | 1 |
Fong, WP; Tsang, PW; Wong, KS | 1 |
Bjerga, GE; Edvardsen, KS; Leiros, HK; Leiros, I; Lorentzen, MS; Samuelsen, Ø; Skagseth, S | 1 |
Bachta, KER; Bertucci, HK; Brunzelle, JS; Gatesy, SWM; Hauser, AR; Lebrun-Corbin, M; Minasov, G; Ozer, EA; Pincus, NB; Rosas-Lemus, M; Satchell, KJF; Shuvalova, LA | 1 |
1 trial(s) available for cephalosporin c and phenylalanine
Article | Year |
---|---|
Effect of L-phenylalanine supplementation and a high-protein diet on pharmacokinetics of cefdinir in healthy volunteers: an exploratory study.
Topics: Adult; Alanine Transaminase; Anti-Bacterial Agents; Area Under Curve; Blood Urea Nitrogen; Cefdinir; Cephalosporins; Cross-Over Studies; Dietary Proteins; Dietary Supplements; Humans; Intestinal Absorption; Kidney Function Tests; Male; Metabolic Clearance Rate; Nutrition Policy; Phenylalanine; Pilot Projects; Time Factors; Triglycerides | 2007 |
9 other study(ies) available for cephalosporin c and phenylalanine
Article | Year |
---|---|
Studies on the formation of transfer ribonucleic acid-ribosome complexes. IX. Effect of antibiotics on translocation and peptide bond formation.
Topics: Anti-Bacterial Agents; Binding Sites; Carbon Isotopes; Cephalosporins; Depression, Chemical; Escherichia coli; Fusidic Acid; Guanine Nucleotides; Nucleosides; Peptide Biosynthesis; Peptides; Phenylalanine; Potassium; Ribosomes; RNA, Transfer; Transferases | 1970 |
The range and significance of variations amongst bacterial penicillinases.
Topics: Ampicillin; Bacillus; Bacillus cereus; Cephalosporins; Cysteine; Escherichia coli; Isoenzymes; Methicillin; Molecular Weight; Penicillin G; Penicillinase; Phenylalanine; Staphylococcus | 1968 |
Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis.
Topics: Asparagine; beta-Lactamases; Binding Sites; Carbapenems; Cephalosporins; Computational Biology; Isoleucine; Kinetics; Metals; Models, Molecular; Mutagenesis, Site-Directed; Penicillins; Phenylalanine; Protein Binding; Serine; Stenotrophomonas maltophilia; Tyrosine | 2002 |
H+-dependent transport mechanism of nateglinide in the brush-border membrane of the rat intestine.
Topics: Animals; Biological Transport; Ceftibuten; Cephalosporins; Cyclohexanes; Dose-Response Relationship, Drug; Hypoglycemic Agents; Intestine, Small; Microvilli; Nateglinide; Phenylalanine; Protons; Rats | 2005 |
Nateglinide uptake by a ceftibuten transporter in the rat kidney brush-border membrane.
Topics: Animals; Ceftibuten; Cephalosporins; Cyclohexanes; Ion Transport; Kidney; Male; Microvilli; Nateglinide; Peptide Transporter 1; Phenylalanine; Protons; Rats; Rats, Wistar; Symporters | 2005 |
Purification by p-aminobenzoic acid (PABA)-affinity chromatography and the functional reconstitution of the nateglinide/H+ cotransport system in the rat intestinal brush-border membrane.
Topics: 4-Aminobenzoic Acid; Animals; Benzoic Acid; Biological Transport; Ceftibuten; Cell Membrane; Cephalosporins; Chromatography, Affinity; Chromatography, High Pressure Liquid; Cyclohexanes; Dioxins; Dose-Response Relationship, Drug; Durapatite; Electrophoresis, Polyacrylamide Gel; Fluorescein; Hypoglycemic Agents; Intestinal Mucosa; Intestine, Small; Liposomes; Male; Microvilli; Nateglinide; Phenylalanine; Proteolipids; Protons; Rats; Rats, Wistar; Salicylic Acid; Ultraviolet Rays | 2006 |
A single Phe54Tyr substitution improves the catalytic activity and thermostability of Trigonopsis variabilis D-amino acid oxidase.
Topics: Amino Acid Sequence; Amino Acid Substitution; Animals; Catalysis; Cephalosporins; D-Amino-Acid Oxidase; Enzyme Stability; Fungal Proteins; Humans; Models, Molecular; Molecular Sequence Data; Mutagenesis, Site-Directed; Phenylalanine; Protein Structure, Tertiary; Saccharomycetales; Sequence Alignment; Temperature; Tyrosine | 2010 |
His224 alters the R2 drug binding site and Phe218 influences the catalytic efficiency of the metallo-β-lactamase VIM-7.
Topics: Amino Acid Substitution; Anti-Bacterial Agents; Aspartic Acid; beta-Lactam Resistance; beta-Lactamases; Binding Sites; Biocatalysis; Cefepime; Ceftazidime; Cephalosporins; Endopeptidases; Enzyme Stability; Escherichia coli; Gene Expression; Histidine; Hot Temperature; Hydrogen Bonding; Molecular Docking Simulation; Phenylalanine; Protein Binding; Pseudomonas aeruginosa; Recombinant Fusion Proteins; Static Electricity; Structure-Activity Relationship | 2014 |
Functional and Structural Characterization of OXA-935, a Novel OXA-10-Family β-Lactamase from Pseudomonas aeruginosa.
Topics: Anti-Bacterial Agents; Aspartic Acid; Azabicyclo Compounds; beta-Lactamase Inhibitors; beta-Lactamases; Ceftazidime; Cephalosporinase; Cephalosporins; Glycine; Humans; Microbial Sensitivity Tests; Phenylalanine; Pseudomonas aeruginosa; Pseudomonas Infections; Serine; Tazobactam | 2022 |