cellulase has been researched along with stearic-acid* in 3 studies
3 other study(ies) available for cellulase and stearic-acid
Article | Year |
---|---|
Effects of emulsified octadecanic acids on gas production and cellulolysis by the rumen anaerobic fungus, Piromyces communis M014.
Responses of the rumen anaerobic fungus, Piromyces communis M014, to octadecanic long-chain fatty acids (LCFAs) were evaluated by measuring total and hydrogen gas productions, filter paper (FP) cellulose degradation and polysaccharidase enzyme activities. Octadecanic acids (stearic acid, C(18:0); oleic acid, C(18:1); linoleic acid, C(18:2) and linolenic acid, C(18:3)) were emulsified by ultrasonication under anaerobic conditions, and added to the medium at the level of 0.001%. When P. communis M014 was grown in culture with stearic and oleic acids, the cumulative gas production, FP cellulose digestion and enzyme activities were significantly (p<0.05) increased in the early incubation times relative to those for the control. However, the addition of linolenic acid inhibited all of the investigated parameters, including cellulose degradation, enzyme activities and gas production, up to 168h incubation. These results indicated that stearic and oleic acids tended to have stimulatory effects on fungal cellulolysis, whereas linolenic acid caused a significant (p<0.05) inhibitory effect on cellulolysis by the rumen fungus. The fungus, P. communis M014, can biohydrogenate C(18) unsaturated fatty acids to escape from their toxic effects. Therefore, in this study, the results indicated that the more highly the added C(18) LCFA to the fungal culture was unsaturated, the higher the inhibition of gas production and cellulase enzyme activity was. Topics: alpha-Linolenic Acid; Ammonia; Anaerobiosis; Animals; Cellulase; Cellulose; Fermentation; Hydrogen; Hydrogen-Ion Concentration; Lactic Acid; Linoleic Acid; Oleic Acid; Piromyces; Rumen; Stearic Acids; Xylosidases | 2008 |
Analysis of the products from enzymatic scouring of cotton.
This article discusses the analysis of the hydrolysis products from one-step scouring of cotton using pectinase and two-step scouring of cotton using lipase then cellulase, protease then cellulase, or lipase/protease then cellulase, to improve water absorbency of cotton. UV spectrophotometric analysis indicated that the pectinase scouring process produced approximately 18-fold higher amounts of reducing sugars and galacturonic acid than any of the two-step scouring processes. The production rate of reducing sugars and galacturonic acid from most of the scouring processes showed a decrease with an increase in time. HPLC analysis revealed that the lipase/protease/cellulase scouring processes produced approximately 5-fold higher amounts of 17 amino acids than the pectinase scouring process. GC analysis for 18 fatty acids (C(8)-C(24)) revealed that three major fatty acids, palmitic acid, stearic acid, and behenic acid, were found on both the scoured and the unscoured fabrics. Scoured fabrics were tested for content of proteins, extractable components, waxes, and anionic components including pectins, and some differences among the fabric scoured with different enzyme combinations were found. Topics: Cellulase; Chromatography, Gas; Chromatography, High Pressure Liquid; Cotton Fiber; Fatty Acids; Gossypium; Hexuronic Acids; Hydrolysis; Lipase; Palmitic Acid; Polygalacturonase; Spectrophotometry, Ultraviolet; Stearic Acids; Textiles | 2007 |
Cellulysin from the plant parasitic fungus Trichoderma viride elicits volatile biosynthesis in higher plants via the octadecanoid signalling cascade.
Cellulysin, a crude cellulase from the plant parasitic fungus Trichoderma viride, induces the biosynthesis of volatiles in higher plants (Nicotiana plumbaginifolia, Phaseolus lunatus, and Zea mays) when applied to cut petioles by the transpiration stream. The pattern of the emitted volatiles largely resembles that from a herbivore damage or treatment of the plants with jasmonic acid (JA) indicating that cellulysin acts via activation of the octadecanoid signalling pathway. The treatment with cellulysin raises the level of endogenous JA after 30 min and is followed by a transient emission of ethylene after 2-3 h. Volatile production becomes significant after 12-24 h. Inhibitors of the JA pathway effectively block the cellulysin-dependent volatile biosynthesis. Topics: Cellulase; Chromatography, Gas; Cyclopentanes; Ethylenes; Fabaceae; Kinetics; Nicotiana; Oxylipins; Plants; Plants, Medicinal; Plants, Toxic; Signal Transduction; Stearic Acids; Trichoderma; Zea mays | 1997 |