cellulase and beta-glucono-1-5-lactone

cellulase has been researched along with beta-glucono-1-5-lactone* in 5 studies

Other Studies

5 other study(ies) available for cellulase and beta-glucono-1-5-lactone

ArticleYear
Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.
    PloS one, 2013, Volume: 8, Issue:6

    Although many endo-ß-1,4-glucanases have been isolated in invertebrates, their cellulolytic systems are not fully understood. In particular, gastropod feeding on seaweed is considered an excellent model system for production of bioethanol and renewable bioenergy from third-generation feedstocks (microalgae and seaweeds). In this study, enzymes involved in the conversion of cellulose and other polysaccharides to glucose in digestive fluids of the sea hare (Aplysia kurodai) were screened and characterized to determine how the sea hare obtains glucose from sea lettuce (Ulva pertusa). Four endo-ß-1,4-glucanases (21K, 45K, 65K, and 95K cellulase) and 2 ß-glucosidases (110K and 210K) were purified to a homogeneous state, and the synergistic action of these enzymes during cellulose digestion was analyzed. All cellulases exhibited cellulase and lichenase activities and showed distinct cleavage specificities against cellooligosaccharides and filter paper. Filter paper was digested to cellobiose, cellotriose, and cellotetraose by 21K cellulase, whereas 45K and 65K enzymes hydrolyzed the filter paper to cellobiose and glucose. 210K ß-glucosidase showed unique substrate specificity against synthetic and natural substrates, and 4-methylumbelliferyl (4MU)-ß-glucoside, 4MU-ß-galactoside, cello-oligosaccharides, laminarin, and lichenan were suitable substrates. Furthermore, 210K ß-glucosidase possesses lactase activity. Although ß-glucosidase and cellulase are necessary for efficient hydrolysis of carboxymethylcellulose to glucose, laminarin is hydrolyzed to glucose only by 210K ß-glucosidase. Kinetic analysis of the inhibition of 210K ß-glucosidase by D-glucono-1,5-lactone suggested the presence of 2 active sites similar to those of mammalian lactase-phlorizin hydrolase. Saccharification of sea lettuce was considerably stimulated by the synergistic action of 45K cellulase and 210K ß-glucosidase. Our results indicate that 45K cellulase and 210K ß-glucosidase are the core components of the sea hare digestive system for efficient production of glucose from sea lettuce. These findings contribute important new insights into the development of biofuel processing biotechnologies from seaweed.

    Topics: Amino Acid Sequence; Animals; Aplysia; Aquatic Organisms; beta-Glucosidase; Cellobiose; Cellulase; Cellulose; Enzyme Assays; Gastrointestinal Tract; Glucans; Gluconates; Glucose; Glucosides; Kinetics; Lactones; Molecular Sequence Data; Polysaccharides; Substrate Specificity; Tetroses; Ulva

2013
Use of cellulase inhibitors to produce cellobiose.
    Applied biochemistry and biotechnology, 2010, Volume: 162, Issue:5

    The economics driving biorefinery development requires high value-added products such as cellobiose for financial feasibility. This research describes a simple technology for increasing cellobiose yields during lignocellulosic hydrolysis. The yield of cellobiose produced during cellulose hydrolysis was maximized by modification of reaction conditions. The addition of an inhibitor from the group that includes glucose oxidase, gluconolactone, and gluconic acid during cellulase hydrolysis of cellulose increased the amount of cellobiose produced. The optimal conditions for cellobiose production were determined for four factors; reaction time, cellulase concentration, cellulose concentration, and inhibitor concentration using a Box-Behnken experimental design. Gluconolactone in the cellulase system resulted in the greatest production of cellobiose (31.2%) from cellulose. The yield of cellobiose was 23.7% with glucose oxidase, similar to 21.9% with gluconic acid.

    Topics: Analysis of Variance; Biomass; Cellobiose; Cellulase; Cellulose; Enzyme Inhibitors; Gluconates; Glucose Oxidase; Hydrolysis; Kinetics; Lactones; Lignin; Trichoderma

2010
Purification and some properties of a beta-glucosidase from Trichoderma harzianum type C-4.
    Bioscience, biotechnology, and biochemistry, 2001, Volume: 65, Issue:9

    Type C-4 strain of Trichoderma harzianum was isolated as a microorganism with high cellulolytic activity. Beta-glucosidase is involved in the last step of cellulose saccharification by degrading cellobiose to glucose, and plays an important role in the cellulase enzyme system with a synergic action with endoglucanase and cellobiohydrolase for cellulose degradation. Beta-glucosidase from T. harzianum type C-4 was purified to homogeneity through Sephacryl S-300, DEAE-Sephadex A-50, and Mono P column chromatographies. It was a single polypeptide with the molecular mass of 75,000 by SDS-PAGE. The enzyme was very active at pH 5.0 and 45 degrees C. No significant inhibition was observed in the presence of metal ions, thiol reagents, or EDTA. The enzyme was stable in the presence of 5% ox gall and digestive enzymes. p-Nitrophenyl-beta-D-cellobioside worked as a substrate for the enzyme as much as p-nitrophenyl-beta-glucopyranoside. Glucose and gluconolactone showed competitive inhibition with a Ki of 1 mM and 1.8 microM, respectively, while galactose, mannose, and xylose did not inhibit the enzyme significantly.

    Topics: beta-Glucosidase; Cellulase; Cellulose; Chromatography, Liquid; Edetic Acid; Enzyme Inhibitors; Enzyme Stability; Gluconates; Glucose; Glucosides; Hydrogen-Ion Concentration; Lactones; Metals; Substrate Specificity; Trichoderma

2001
A cellulase/xylanase-negative mutant of Streptomyces lividans 1326 defective in cellobiose and xylobiose uptake is mutated in a gene encoding a protein homologous to ATP-binding proteins.
    Molecular microbiology, 1995, Volume: 17, Issue:2

    The uptake of monosaccharides (glucose and xylose) and disaccharides (cellobiose and xylobiose) was evaluated in the Streptomyces lividans mutant strain 10-164. The pleiotropic mutation had no effect on glucose uptake; however, the Vmax of xylose uptake was decreased 10-fold as compared to the wild-type strain, S. lividans 1326, and the transport system of cellobiose and xylobiose, the putative inducers of the cellulase and xylanase genes, was completely abolished resulting in a cellulase/xylanase-negative mutant. An accumulation of xylose and glucose in culture media was observed when the mutant was grown on xylobiose and cellobiose, respectively. Cell-associated beta-glucosidase and low levels of extracellular beta-glucosidase were detected in both strains. When gluconolactone, a beta-glucosidase inhibitor, was added to the medium there was no uptake of cellobiose or release of glucose by the mutant strain, whereas the uptake of cellobiose by the wild-type strain was not significantly affected. It is thus proposed that the active transport system for cellobiose and xylobiose is affected in mutant strain 10-164. Glucose and xylose production from disaccharide hydrolysis are due to beta-glucosidase and beta-xylosidase activities, which sustain the growth of the mutant strain. Clones complementing the mutation were isolated from a gene bank constructed using mutant strain 10-164. The msiK gene codes for MsiK, a 40 kDa multiple sugar import protein, which belongs to the family of ATP-binding proteins. The mutation is located in the B site which is responsible for ATP binding. This protein probably provides energy to the xylose and disaccharide transport system as a result of the hydrolysis of ATP.

    Topics: Adenosine Triphosphatases; Adenosine Triphosphate; Amino Acid Sequence; Bacterial Proteins; Base Sequence; beta-Glucosidase; Biological Transport; Carrier Proteins; Cellobiose; Cellulase; Cloning, Molecular; Disaccharides; Enzyme Inhibitors; Genes, Bacterial; Gluconates; Kinetics; Lactones; Molecular Sequence Data; Mutation; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Streptomyces; Xylan Endo-1,3-beta-Xylosidase; Xylose; Xylosidases

1995
Repression of endo-1,4-beta-glucanase formation in Penicillium janthinellum and product inhibition of its 1,4-beta-glucanases and cellobiases.
    Journal of bacteriology, 1982, Volume: 149, Issue:2

    Endo-1,4-beta-glucanase formation of Penicillium janthinellum was repressed by glucose, sophorose, and glycerol. Chromatography on DEAE-Sephadex A-50 was employed to separate the 1,4-beta-glucanases from two cellobiases. The 1,4-beta-glucanases were inhibited competitively by cellobiose and glucose, and the two cellobiases were inhibited by glucose and glucono-delta-lactone.

    Topics: beta-Glucosidase; Cellulase; Enzyme Repression; Glucans; Gluconates; Glucose; Glucosidases; Glycerol; Kinetics; Lactones; Penicillium

1982