cellulase and ammonium-nitrate

cellulase has been researched along with ammonium-nitrate* in 2 studies

Other Studies

2 other study(ies) available for cellulase and ammonium-nitrate

ArticleYear
Direct bio-utilization of untreated rapeseed meal for effective iturin A production by Bacillus subtilis in submerged fermentation.
    PloS one, 2014, Volume: 9, Issue:10

    The feasibility of using untreated rapeseed meal as a nitrogen source for iturin A production by Bacillus subtilis 3-10 in submerged fermentation was first evaluated by comparison with two different commercial nitrogen sources of peptone and ammonium nitrate. A significant promoting effect of rapeseed meal on iturin A production was observed and the maximum iturin A concentration of 0.60 g/L was reached at 70 h, which was 20% and 8.0 fold higher than that produced from peptone and ammonium nitrate media, respectively. It was shown that rapeseed meal had a positive induction effect on protease secretion, contributing to the release of soluble protein from low water solubility solid rapeseed meal for an effective supply of available nitrogen during fermentation. Moreover, compared to raw rapeseed meal, the remaining residue following fermentation could be used as a more suitable supplementary protein source for animal feed because of the great decrease of major anti-nutritional components including sinapine, glucosinolate and its degradation products of isothiocyanate and oxazolidine thione. The results obtained from this study demonstrate the potential of direct utilization of low cost rapeseed meal as a nitrogen source for commercial production of iturin A and other secondary metabolites by Bacillus subtilis.

    Topics: Anti-Bacterial Agents; Bacillus subtilis; Bioreactors; Brassica rapa; Cellulase; Feasibility Studies; Fermentation; Glucose; Hydrogen-Ion Concentration; Nitrates; Nitrogen; Oxygen; Peptide Hydrolases; Peptides, Cyclic; Peptones

2014
Enhanced production of carboxymethylcellulase of a marine microorganism, Bacillus subtilis subsp. subtilis A-53 in a pilot-scaled bioreactor by a recombinant Escherichia coli JM109/A-53 from rice bran.
    Molecular biology reports, 2013, Volume: 40, Issue:5

    A gene encoding the carboxymethylcellulase (CMCase) of a marine bacterium, Bacillus subtilis subsp. subtilis A-53, was cloned in Escherichia coli JMB109 and the recombinant strain was named as E. coli JMB109/A-53. The optimal conditions of rice bran, ammonium chloride, and initial pH of the medium for cell growth, extracted by Design Expert Software based on response surface methodology, were 100.0 g/l, 7.5 g/l, and 7.0, respectively, whereas those for production of CMCase were 100.0 g/l, 7.5 g/l, and 8.0. The optimal temperatures for cell growth and the production of CMCase by E. coli JM109/A-53 were found to be and 40 and 35 °C, respectively. The optimal agitation speed and aeration rate of a 7 l bioreactor for cell growth were 400 rpm and 1.5 vvm, whereas those for production of CMCase were 400 rpm and 0.5 vvm. The optimal inner pressure for cell growth was 0.06 MPa, which was the same as that for production of CMCase. The production of CMCase by E. coli JM109/A-53 under optimized conditions was 880.2 U/ml, which was 2.9 times higher than that before optimization. In this study, rice bran and ammonium chloride were developed as carbon and nitrogen source for production of CMCase by a recombinant E. coli JM109/A-53 and the productivity of E. coli JM109/A-53 was 5.9 times higher than that of B. subtilis subp. subtilis A-53.

    Topics: Amino Acid Sequence; Bacillus subtilis; Base Sequence; Bioreactors; Carbon; Cellulase; Cloning, Molecular; Escherichia coli; Fermentation; Hydrogen-Ion Concentration; Molecular Sequence Data; Nitrates; Nitrogen; Plant Lectins; Pressure; Recombinant Proteins; Sequence Alignment; Sequence Analysis, DNA; Temperature

2013