cellobiose has been researched along with laminaran in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 1 (50.00) | 2.80 |
Authors | Studies |
---|---|
Nishiyama, N; Tominaga, K; Tsuji, A; Yuasa, K | 1 |
Duan, B; Lin, M; Liu, C; Liu, Z; Yan, S; Yang, Y; Yuan, S; Zhang, Z; Zhao, J | 1 |
2 other study(ies) available for cellobiose and laminaran
Article | Year |
---|---|
Comprehensive enzymatic analysis of the cellulolytic system in digestive fluid of the Sea Hare Aplysia kurodai. Efficient glucose release from sea lettuce by synergistic action of 45 kDa endoglucanase and 210 kDa ß-glucosidase.
Topics: Amino Acid Sequence; Animals; Aplysia; Aquatic Organisms; beta-Glucosidase; Cellobiose; Cellulase; Cellulose; Enzyme Assays; Gastrointestinal Tract; Glucans; Gluconates; Glucose; Glucosides; Kinetics; Lactones; Molecular Sequence Data; Polysaccharides; Substrate Specificity; Tetroses; Ulva | 2013 |
An Aspergillus nidulans endo-β-1,3-glucanase exhibited specific catalytic features and was used to prepare 3-O-β-cellobiosyl-d-glucose and 3-O-β-gentiobiosyl-d-glucose with high antioxidant activity from barley β-glucan and laminarin, respectively.
Topics: Antioxidants; Aspergillus nidulans; beta-Glucans; Biphenyl Compounds; Catalysis; Cellobiose; Glucan Endo-1,3-beta-D-Glucosidase; Glucans; Glucose; Hordeum; Hydrolysis; Molecular Structure; Picrates; Structure-Activity Relationship; Substrate Specificity | 2021 |