cefamandole has been researched along with estradiol-17-beta-glucuronide* in 3 studies
3 other study(ies) available for cefamandole and estradiol-17-beta-glucuronide
Article | Year |
---|---|
Oral availability of cefadroxil depends on ABCC3 and ABCC4.
Some cephalosporins, such as cefadroxil, are orally available. H(+)-coupled peptide transporter 1 mediates the transport of cephalosporins across the apical membrane of enterocytes. It is not known which mechanism(s) is responsible for the subsequent transport of cephalosporins across the basolateral membrane toward the circulation. We have tested whether ATP-binding cassette (ABC) transporters ABCC3 and/or ABCC4 are involved in the latter process. Transport experiments with plasma membrane vesicles expressing these transporters were used to determine whether ABCC3 and ABCC4 can transport cephalosporins in vitro. The involvement of Abcc3 and Abcc4 in the transport of cefadroxil from enterocytes was subsequently studied using intestinal explants from wild-type, Abcc3(-/-), Abcc4(-/-), and Abcc3(-/-)/Abcc4(-/-) mice in an Ussing chamber setup. Finally, appearance of cefadroxil in portal blood was investigated in vivo after intrajejunal administration of cefadroxil in wild-type, Abcc3(-/-), Abcc4(-/-), and Abcc3(-/-)/Abcc4(-/-) mice. ABCC3- and ABCC4-mediated transport of estradiol-17β-glucuronide was dose-dependently inhibited by cephalosporins in vesicular transport experiments. Furthermore, transport of cefadroxil by ABCC3 and ABCC4 was saturable with K(m) values of 2.5 ± 0.7 and 0.25 ± 0.07 mM, respectively. Transport of cefadroxil from the apical to the basolateral side of jejunal tissue explants was unchanged in Abcc3(-/-) but significantly reduced (approximately 2-fold) in Abcc4(-/-) and Abcc3(-/-)/Abcc4(-/-) when compared with wild-type tissue. Upon instillation of cefadroxil in the jejunum, portal and peripheral blood concentrations were similar in Abcc3(-/-) and Abcc4(-/-) but approximately 2-fold reduced in Abcc3(-/-)/Abcc4(-/-) compared with wild-type mice. Our data demonstrate that intestinal absorption of cefadroxil depends partly on ABCC3 and ABCC4. Topics: Administration, Oral; Animals; Anti-Bacterial Agents; Biological Availability; Biological Transport; Cefadroxil; Cell Membrane; Enterocytes; Estradiol; Intestinal Absorption; Intestinal Mucosa; Jejunum; Mice; Mice, Knockout; Multidrug Resistance-Associated Proteins | 2012 |
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drug-drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors. Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection | 2012 |
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
The chemical space of registered oral drugs was explored for inhibitors of the human multidrug-resistance associated protein 2 (MRP2; ABCC2), using a data set of 191 structurally diverse drugs and drug-like compounds. The data set included a new reference set of 75 compounds, for studies of hepatic drug interactions with transport proteins, CYP enzymes, and compounds associated with liver toxicity. The inhibition of MRP2-mediated transport of estradiol-17beta-D-glucuronide was studied in inverted membrane vesicles from Sf9 cells overexpressing human MRP2. A total of 27 previously unknown MRP2 inhibitors were identified, and the results indicate an overlapping but narrower inhibitor space for MRP2 compared with the two other major ABC efflux transporters P-gp (ABCB1) and BCRP (ABCG2). In addition, 13 compounds were shown to stimulate the transport of estradiol-17beta-D-glucuronide. The experimental results were used to develop a computational model able to discriminate inhibitors from noninhibitors according to their molecular structure, resulting in a predictive power of 86% for the training set and 72% for the test set. The inhibitors were in general larger and more lipophilic and presented a higher aromaticity than the noninhibitors. The developed computational model is applicable in an early stage of the drug discovery process and is proposed as a tool for prediction of MRP2-mediated hepatic drug interactions and toxicity. Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship | 2008 |