Page last updated: 2024-08-23

cefadroxil anhydrous and valacyclovir

cefadroxil anhydrous has been researched along with valacyclovir in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (25.00)18.2507
2000's2 (25.00)29.6817
2010's4 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Balimane, PV; Guo, A; Kitada, H; Leibach, FH; Nakanishi, T; Sinko, PJ; Tamai, I; Tsuji, A1
Balimane, PV; Guo, A; Hu, P; Leibach, FH; Sinko, PJ1
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL1
Artursson, P; Bergström, CA; Hoogstraate, J; Matsson, P; Norinder, U; Pedersen, JM1
Benet, LZ; Brouwer, KL; Chu, X; Dahlin, A; Evers, R; Fischer, V; Giacomini, KM; Hillgren, KM; Hoffmaster, KA; Huang, SM; Ishikawa, T; Keppler, D; Kim, RB; Lee, CA; Niemi, M; Polli, JW; Sugiyama, Y; Swaan, PW; Tweedie, DJ; Ware, JA; Wright, SH; Yee, SW; Zamek-Gliszczynski, MJ; Zhang, L1
Artursson, P; Haglund, U; Karlgren, M; Kimoto, E; Lai, Y; Norinder, U; Vildhede, A; Wisniewski, JR1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Smith, DE; Yang, B1

Reviews

2 review(s) available for cefadroxil anhydrous and valacyclovir

ArticleYear
Membrane transporters in drug development.
    Nature reviews. Drug discovery, 2010, Volume: 9, Issue:3

    Topics: Animals; Computer Simulation; Decision Trees; Drug Approval; Drug Discovery; Drug Evaluation, Preclinical; Drug Interactions; Humans; Membrane Transport Proteins; Mice; Mice, Knockout; Prescription Drugs

2010
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

6 other study(ies) available for cefadroxil anhydrous and valacyclovir

ArticleYear
Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir.
    Biochemical and biophysical research communications, 1998, Sep-18, Volume: 250, Issue:2

    Topics: Acyclovir; Animals; Biological Transport; Carrier Proteins; Female; Gene Expression; Humans; Oocytes; Peptide Transporter 1; Prodrugs; RNA, Complementary; Symporters; Valacyclovir; Valine; Xenopus laevis

1998
Interactions of a nonpeptidic drug, valacyclovir, with the human intestinal peptide transporter (hPEPT1) expressed in a mammalian cell line.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 289, Issue:1

    Topics: Acyclovir; Animals; Anti-Bacterial Agents; Antiviral Agents; Biological Transport; Caco-2 Cells; Carrier Proteins; CHO Cells; Cricetinae; Dipeptides; Humans; Hydrogen-Ion Concentration; Kinetics; Lactams; Peptide Transporter 1; Rabbits; Rats; Symporters; Transfection; Valacyclovir; Valine

1999
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
    Current drug discovery technologies, 2004, Volume: 1, Issue:4

    Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration

2004
Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2).
    Journal of medicinal chemistry, 2008, Jun-12, Volume: 51, Issue:11

    Topics: Administration, Oral; Animals; Antineoplastic Agents; Antipsychotic Agents; Antiviral Agents; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 1; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Cell Line; Computer Simulation; Cytochrome P-450 Enzyme System; Drug-Related Side Effects and Adverse Reactions; Estradiol; Humans; Insecta; Liver; Models, Molecular; Multidrug Resistance-Associated Protein 2; Multidrug Resistance-Associated Proteins; Neoplasm Proteins; Pharmaceutical Preparations; Pharmacology; Structure-Activity Relationship

2008
Classification of inhibitors of hepatic organic anion transporting polypeptides (OATPs): influence of protein expression on drug-drug interactions.
    Journal of medicinal chemistry, 2012, May-24, Volume: 55, Issue:10

    Topics: Atorvastatin; Biological Transport; Drug Interactions; Estradiol; Estrone; HEK293 Cells; Heptanoic Acids; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Least-Squares Analysis; Liver; Liver-Specific Organic Anion Transporter 1; Models, Molecular; Multivariate Analysis; Organic Anion Transporters; Organic Anion Transporters, Sodium-Independent; Protein Isoforms; Pyrroles; Solute Carrier Organic Anion Transporter Family Member 1B3; Structure-Activity Relationship; Transfection

2012
Significance of peptide transporter 1 in the intestinal permeability of valacyclovir in wild-type and PepT1 knockout mice.
    Drug metabolism and disposition: the biological fate of chemicals, 2013, Volume: 41, Issue:3

    Topics: Acyclovir; Administration, Oral; Animals; Antiviral Agents; Binding, Competitive; Biotransformation; Cefadroxil; Chromatography, High Pressure Liquid; Colon; Dipeptides; Duodenum; Ileum; Intestinal Absorption; Intestinal Mucosa; Jejunum; Mice; Mice, Knockout; Models, Biological; Peptide Transporter 1; Perfusion; Permeability; Reproducibility of Results; Symporters; Valacyclovir; Valine

2013