cefadroxil anhydrous has been researched along with ceftazidime in 10 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (10.00) | 18.2507 |
2000's | 5 (50.00) | 29.6817 |
2010's | 4 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Apiwattanakul, N; Endou, H; Jariyawat, S; Kanai, Y; Sekine, T; Sophasan, S; Takeda, M | 1 |
Carter, AL; Ganapathy, ME; Ganapathy, V; Huang, W; Iseki, K; Leibach, FH; Rajan, DP; Sugawara, M | 1 |
Brandsch, M; Luckner, P | 1 |
Benz, RD; Contrera, JF; Kruhlak, NL; Matthews, EJ; Weaver, JL | 1 |
Lombardo, F; Obach, RS; Waters, NJ | 1 |
Chupka, J; El-Kattan, A; Feng, B; Miller, HR; Obach, RS; Troutman, MD; Varma, MV | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Bommareddy, A; Gionfriddo, MR; Heindel, GA; Mukhija, P; Vanwert, AL; Witkowski, S; Wolman, AT | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
1 review(s) available for cefadroxil anhydrous and ceftazidime
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
9 other study(ies) available for cefadroxil anhydrous and ceftazidime
Article | Year |
---|---|
The interaction and transport of beta-lactam antibiotics with the cloned rat renal organic anion transporter 1.
Topics: Animals; Anion Transport Proteins; Anti-Bacterial Agents; Biological Transport; Carrier Proteins; Cell Survival; Cephaloridine; Cephalosporins; In Vitro Techniques; Kidney; Kinetics; Oocytes; p-Aminohippuric Acid; Penicillin G; Rats; Recombinant Proteins; Xenopus laevis | 1999 |
beta-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter.
Topics: Acetylcarnitine; Animals; Anti-Bacterial Agents; Carnitine; Carrier Proteins; Cefadroxil; Cefepime; Cephaloridine; Cephalosporins; Dose-Response Relationship, Drug; HeLa Cells; Humans; Kinetics; Membrane Proteins; Nitrogen; Organic Cation Transport Proteins; Rats; Sodium; Solute Carrier Family 22 Member 5; Tumor Cells, Cultured | 2000 |
Interaction of 31 beta-lactam antibiotics with the H+/peptide symporter PEPT2: analysis of affinity constants and comparison with PEPT1.
Topics: Animals; Anti-Bacterial Agents; beta-Lactams; Binding Sites; Caco-2 Cells; Dose-Response Relationship, Drug; Humans; Peptide Transporter 1; Protein Binding; Rats; Symporters | 2005 |
Assessment of the health effects of chemicals in humans: II. Construction of an adverse effects database for QSAR modeling.
Topics: Adverse Drug Reaction Reporting Systems; Artificial Intelligence; Computers; Databases, Factual; Drug Prescriptions; Drug-Related Side Effects and Adverse Reactions; Endpoint Determination; Models, Molecular; Quantitative Structure-Activity Relationship; Software; United States; United States Food and Drug Administration | 2004 |
Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds.
Topics: Blood Proteins; Half-Life; Humans; Hydrogen Bonding; Infusions, Intravenous; Pharmacokinetics; Protein Binding | 2008 |
Physicochemical determinants of human renal clearance.
Topics: Humans; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydrophobic and Hydrophilic Interactions; Kidney; Metabolic Clearance Rate; Molecular Weight | 2009 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Organic anion transporter 3 interacts selectively with lipophilic β-lactam antibiotics.
Topics: Animals; Anti-Bacterial Agents; beta-Lactams; Biological Transport; Cell Line, Transformed; Humans; Mice; Organic Anion Transport Protein 1; Organic Anion Transporters, Sodium-Independent; Solubility; Structure-Activity Relationship | 2013 |