cdw17-antigen has been researched along with betadex* in 2 studies
2 other study(ies) available for cdw17-antigen and betadex
Article | Year |
---|---|
Impact of the Niemann-Pick c1 Gene Mutation on the Total Cellular Glycomics of CHO Cells.
Niemann-Pick disease type C (NPC) is an autosomal recessive lipid storage disorder, and the majority of cases are caused by mutations in the NPC1 gene. In this study, we clarified how a single gene mutation in the NPC1 gene impacts the cellular glycome by analyzing the total glycomic expression profile of Chinese hamster ovary cell mutants defective in the Npc1 gene (Npc1 KO CHO cells). A number of glycomic alterations were identified, including increased expression of lactosylceramide, GM1, GM2, GD1, various neolacto-series glycosphingolipids, and sialyl-T (O-glycan), which was found to be the major sialylated protein-bound glycan, as well as various N-glycans, which were commonly both fucosylated and sialylated. We also observed significant increases in the total amounts of free oligosaccharides (fOSs), especially in the unique complex- and hybrid-type fOSs. Treatment of Npc1 KO CHO cells with 2-hydroxypropyl-β-cyclodextrin (HPBCD), which can reduce cholesterol and glycosphingolipid (GSL) storage, did not affect the glycomic alterations observed in the GSL-, N-, and O-glycans of Npc1 KO CHO cells. However, HPBCD treatment corrected the glycomic alterations observed in fOSs to levels observed in wild-type cells. Topics: Animals; Antigens, CD; beta-Cyclodextrins; CHO Cells; Cricetulus; Glycomics; Glycosphingolipids; Lactosylceramides; Membrane Glycoproteins; Mutation; Niemann-Pick Disease, Type C; Polysaccharides | 2017 |
Lactosylceramide-enriched glycosphingolipid signaling domain mediates superoxide generation from human neutrophils.
This study is focused on the functional significance of neutrophil lactosylceramide (LacCer)-enriched microdomains, which are involved in the initiation of a signal transduction pathway leading to superoxide generation. Treatment of neutrophils with anti-LacCer antibody, T5A7 or Huly-m13, induced superoxide generation from the cells, which was blocked by PP1, a Src kinase inhibitor; wortmannin, a phosphatidylinositol-3 kinase inhibitor; SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor; and H7, an inhibitor for protein kinase C. When promyelocytic leukemia HL-60 cells were differentiated into neutrophilic lineage by dimethyl sulfoxide (DMSO) treatment, they acquired superoxide-generating activity but did not respond to anti-LacCer antibodies. Density gradient centrifugation revealed that LacCer and Lyn were recovered in detergent-insoluble membrane (DIM) of neutrophils and DMSO-treated HL-60 cells. However, immunoprecipitation experiments indicated that LacCer was associated with Lyn in neutrophils but not in DMSO-treated HL-60 cells. Interestingly, T5A7 induced the phosphorylation of Lyn in neutrophils but not in DMSO-treated HL-60 cells. Moreover, T5A7 induced the phosphorylation of p38 MAPK in neutrophils. T5A7-induced Lyn phosphorylation in neutrophil DIM fraction was significantly enhanced by cholesterol depletion or sequestration with methyl-beta-cyclodextrin or nystatin. Collectively, these data suggest that neutrophils are characterized by the presence of cell surface LacCer-enriched glycosphingolipid signaling domain coupled with Lyn and that the ligand binding to LacCer induces the activation of Lyn, which may be suppressibly regulated by cholesterol, leading to superoxide generation through the phosphatidylinositol-3 kinase-, p38 MAPK-, and protein kinase C-dependent signal transduction pathway. Topics: Antibodies; Antigens, CD; beta-Cyclodextrins; Cell Differentiation; Cell Membrane; Centrifugation, Density Gradient; Cyclodextrins; Dimethyl Sulfoxide; Enzyme Activation; Enzyme Inhibitors; Glycosphingolipids; HL-60 Cells; Humans; Lactosylceramides; Lipids; Mitogen-Activated Protein Kinases; Neutrophils; Nystatin; p38 Mitogen-Activated Protein Kinases; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Protein Kinase C; Signal Transduction; src-Family Kinases; Superoxides | 2002 |