catechin-gallate has been researched along with methyl-gallate* in 2 studies
2 other study(ies) available for catechin-gallate and methyl-gallate
Article | Year |
---|---|
Growth inhibition and apoptosis in cancer cells induced by polyphenolic compounds of Acacia hydaspica: Involvement of multiple signal transduction pathways.
Acacia hydaspica R. Parker is known for its medicinal uses in multiple ailments. In this study, we performed bioassay-guided fractionation of cytotoxic compounds from A. hydaspica and investigated their effects on growth and signaling activity in prostate and breast cancer cell lines. Four active polyphenolic compounds were identified as 7-O-galloyl catechin (GC), catechin (C), methyl gallate (MG), and catechin-3-O-gallate (CG). The four compounds inhibited prostate cancer PC-3 cell growth in a dose-dependent manner, whereas CG and MG inhibited breast cancer MDA-MB-231 cell growth. All tested compounds inhibited cell survival and colony growth in both cell lines, and there was evidence of chromatin condensation, cell shrinkage and apoptotic bodies. Further, acridine orange, ethidium bromide, propidium iodide and DAPI staining demonstrated that cell death occurred partly via apoptosis in both PC-3 and MDA-MB-231 cells. In PC-3 cells treatment repressed the expression of anti-apoptotic molecules Bcl-2, Bcl-xL and survivin, coupled with down-regulation of signaling pathways AKT, NFκB, ERK1/2 and JAK/STAT. In MDA-MB-231 cells, treatment induced reduction of CK2α, Bcl-xL, survivin and xIAP protein expression along with suppression of NFκB, JAK/STAT and PI3K pathways. Our findings suggest that certain polyphenolic compounds derived from A. hydaspica may be promising chemopreventive/therapeutic candidates against cancer. Topics: Acacia; Apoptosis; bcl-X Protein; Blotting, Western; Catechin; Cell Line, Tumor; Cell Proliferation; Cell Survival; Gallic Acid; Humans; Inhibitor of Apoptosis Proteins; Microscopy, Fluorescence; Molecular Structure; Neoplasms; NF-kappa B; Phosphatidylinositol 3-Kinases; Polyphenols; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Survivin; X-Linked Inhibitor of Apoptosis Protein | 2016 |
Modulation of beta-lactam resistance in Staphylococcus aureus by catechins and gallates.
Aqueous extracts of Japanese green tea (Camellia sinensis) are able to reverse beta-lactam resistance in methicillin-resistant Staphylococcus aureus (MRSA). We have attributed the capacity to reverse oxacillin resistance in the homogeneous PBP2a producer BB568 and in EMRSA-16 to (-)-epicatechin gallate (ECG) and (-)-catechin gallate (CG). Minimum inhibitory concentration (MIC) values for oxacillin were reduced from 256 and 512 to 1-4 mg/l, respectively, in the presence of these polyphenols. In addition, (-)-epigallocatechin gallate (EGCG) had a moderate capacity to modulate oxacillin activity against S. aureus BB568, but none against EMRSA-16. ECG, CG and EGCG increased the sensitivity of EMRSA-15 to oxacillin. The gallate moiety was essential for the oxacillin-modulating activity of ECG, as both (-)-epicatechin and (-)-epicatechin-3-cyclohexylcarboxylate were unable to reverse resistance to oxacillin. Gallic acid and three alkyl gallates (methyl gallate, propyl gallate, and octyl gallate) did not modulate beta-lactam resistance in MRSA. Octyl gallate exhibited direct antibacterial activity against S. aureus BB568 (16 mg/l). Modulation of beta-lactam resistance by ECG significantly enhanced the activities of flucloxacillin and the carbapenem antibiotics imipenem and meropenem against 40 MRSA isolates, with MIC(90) values for the antibiotics reduced to the susceptibility breakpoint or below. Consequently, EGCG, CG and, particularly, ECG warrant further investigation as agents to combat beta-lactam resistance in S. aureus. Topics: Anti-Bacterial Agents; beta-Lactam Resistance; Catechin; Flavonoids; Gallic Acid; Microbial Sensitivity Tests; Oxacillin; Phenols; Polyphenols; Propyl Gallate; Staphylococcus aureus | 2004 |