catechin and morin

catechin has been researched along with morin in 26 studies

Research

Studies (26)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's6 (23.08)18.2507
2000's4 (15.38)29.6817
2010's15 (57.69)24.3611
2020's1 (3.85)2.80

Authors

AuthorsStudies
Medić-Sarić, M; Rastija, V1
Amić, D; Lucić, B1
Maccari, R; Ottanà, R1
Kalra, S; Khatik, GL; Kumar, GN; Kumar, R; Narang, R; Nayak, SK; Singh, SK; Sudhakar, K1
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P1
Chu, SC; Hsieh, YS; Lin, JY1
Constantinou, A; Mehta, R; Moon, R; Rao, K; Runyan, C; Vaughan, A1
Chen, K; Cheng, YC; Hu, CQ; Kilkuskie, RE; Lee, KH; Shi, Q1
Calomme, M; Cimanga, K; Cos, P; Hu, JP; Pieters, L; Van Poel, B; Vanden Berghe, D; Vlietinck, AJ; Ying, L1
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Carver, JA; Duggan, PJ; Ecroyd, H; Liu, Y; Meyer, AG; Tranberg, CE1
Ekinci, D; Karagoz, L; Senturk, M; Supuran, CT1
Kosaka, Y; Mizuguchi, M; Yokoyama, T1
Cahlikova, L; Chlebek, J; Havrankova, J; Hofman, J; Hostalkova, A; Lundova, T; Musilek, K; Novotna, E; Wsol, V; Zemanova, L1
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V1
Crosbie, L; Dutta-Roy, AK; Gordon, MJ; Hunter, K; Kelly, C1
Fung, B; Mickle, D; Tong, JH; Wu, J; Wu, TW; Zeng, LH1
Safari, MR; Sheikh, N1
Ghasemzadeh, A; Jaafar, HZ; Rahmat, A1
Apak, R; Beker, BY; Imer, F; Sönmezoğlu, I1
Apak, R; Bakır, T; Beker, BY; Imer, F; Sönmezoğlu, I1
Çelik, H; Koşar, M1
Arinç, E; Çelik, H; Koşar, M1
Fang, Y; Han, G; Li, H; Wan, L; Wang, H; Wu, C; Zhang, A; Zhang, Z1
Abreu, AC; Borges, A; Mcbain, AJ; Saavedra, MJ; Salgado, AJ; Serra, SC; Simões, M1

Reviews

1 review(s) available for catechin and morin

ArticleYear
Recent advancements in mechanistic studies and structure activity relationship of F
    European journal of medicinal chemistry, 2019, Nov-15, Volume: 182

    Topics: Animals; Anti-Bacterial Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Microbial Sensitivity Tests; Molecular Structure; Mycobacterium; Proton-Translocating ATPases; Structure-Activity Relationship

2019

Other Studies

25 other study(ies) available for catechin and morin

ArticleYear
QSAR study of antioxidant activity of wine polyphenols.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:1

    Topics: Antioxidants; Flavonoids; Lipid Peroxidation; Molecular Conformation; Phenols; Polyphenols; Quantitative Structure-Activity Relationship; Regression Analysis; Wine

2009
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents.
    Journal of medicinal chemistry, 2012, Jan-12, Volume: 55, Issue:1

    Topics: Animals; Antineoplastic Agents; Antitubercular Agents; Diabetes Mellitus; Humans; Hypoglycemic Agents; Insulin Resistance; Isoenzymes; Models, Molecular; Molecular Targeted Therapy; Mycobacterium tuberculosis; Neoplasms; Protein Conformation; Protein Tyrosine Phosphatases; Proto-Oncogene Proteins

2012
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
    Bioorganic & medicinal chemistry, 2012, Nov-15, Volume: 20, Issue:22

    Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship

2012
Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity.
    Journal of natural products, 1992, Volume: 55, Issue:2

    Topics: DNA Polymerase I; Flavonoids; Leukemia Virus, Murine; Reverse Transcriptase Inhibitors; Structure-Activity Relationship

1992
Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships.
    Journal of natural products, 1995, Volume: 58, Issue:2

    Topics: DNA Damage; DNA Topoisomerases, Type I; DNA Topoisomerases, Type II; Electrophoresis, Agar Gel; Flavonoids; Hydroxylation; Plasmids; Protein Conformation; Structure-Activity Relationship; Topoisomerase I Inhibitors; Topoisomerase II Inhibitors

1995
Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids.
    Journal of natural products, 1994, Volume: 57, Issue:1

    Topics: Antiviral Agents; Cells, Cultured; Flavonoids; Galactosides; HIV-1; Humans; Mass Spectrometry; Medicine, Chinese Traditional; Plants, Medicinal; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Structure-Activity Relationship; Virus Replication; Zidovudine

1994
Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
    Journal of natural products, 1998, Volume: 61, Issue:1

    Topics: Enzyme Inhibitors; Flavonoids; Free Radical Scavengers; Structure-Activity Relationship; Xanthine Oxidase

1998
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Carboxymethylated-kappa-casein: a convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Animals; Caseins; Flavonoids; Humans; Methylation; Milk; Structure-Activity Relationship

2010
Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, bCA III, hCA IV) by flavonoids.
    Journal of enzyme inhibition and medicinal chemistry, 2013, Volume: 28, Issue:2

    Topics: Carbonic Anhydrase Inhibitors; Carbonic Anhydrases; Dose-Response Relationship, Drug; Flavonoids; Humans; Molecular Structure; Protein Isoforms; Structure-Activity Relationship

2013
Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids.
    Journal of medicinal chemistry, 2015, Sep-24, Volume: 58, Issue:18

    Topics: Adenosine Triphosphate; Allosteric Site; Anilino Naphthalenesulfonates; Binding, Competitive; Crystallography, X-Ray; Death-Associated Protein Kinases; Flavonoids; Kaempferols; Protein Binding; Protein Conformation; Structure-Activity Relationship

2015
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms

2015
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
    European journal of medicinal chemistry, 2020, Dec-15, Volume: 208

    Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins

2020
Modulation of human platelet function by food flavonoids.
    Biochemical Society transactions, 1996, Volume: 24, Issue:2

    Topics: Blood Platelets; Catechin; Collagen; Diet; Flavonoids; Humans; In Vitro Techniques; Platelet Aggregation; Platelet Aggregation Inhibitors; Quercetin; Thrombin

1996
Comparative protection against oxyradicals by three flavonoids on cultured endothelial cells.
    Biochemistry and cell biology = Biochimie et biologie cellulaire, 1997, Volume: 75, Issue:6

    Topics: Animals; Antioxidants; Aorta; Catechin; Cells, Cultured; Endothelium, Vascular; Flavonoids; Necrosis; Quercetin; Reactive Oxygen Species; Swine; Xanthine Oxidase

1997
Effects of flavonoids on the susceptibility of low-density lipoprotein to oxidative modification.
    Prostaglandins, leukotrienes, and essential fatty acids, 2003, Volume: 69, Issue:1

    Topics: Anthocyanins; Apigenin; Arteriosclerosis; Catechin; Flavanones; Flavonoids; Genistein; Humans; Lipid Peroxides; Lipoproteins, LDL; Oxidation-Reduction; Quercetin; Thiobarbituric Acid Reactive Substances

2003
Elevated carbon dioxide increases contents of flavonoids and phenolic compounds, and antioxidant activities in Malaysian young ginger (Zingiber officinale Roscoe.) varieties.
    Molecules (Basel, Switzerland), 2010, Nov-03, Volume: 15, Issue:11

    Topics: Antioxidants; Carbon Dioxide; Catechin; Chromatography, High Pressure Liquid; Cinnamates; Coumaric Acids; Flavanones; Flavonoids; Flavonols; Free Radical Scavengers; Gallic Acid; Hydroxybenzoates; Kaempferols; Malaysia; Phenols; Quercetin; Rutin; Salicylic Acid; Tannins; Vanillic Acid; Zingiber officinale

2010
Protection of ascorbic acid from copper(II)-catalyzed oxidative degradation in the presence of flavonoids: quercetin, catechin and morin.
    International journal of food sciences and nutrition, 2011, Volume: 62, Issue:5

    Topics: Ascorbic Acid; Catalysis; Catechin; Copper; Flavonoids; Molecular Structure; Oxidation-Reduction; Quercetin

2011
Antioxidant protective effect of flavonoids on linoleic acid peroxidation induced by copper(II)/ascorbic acid system.
    Chemistry and physics of lipids, 2011, Volume: 164, Issue:8

    Topics: Antioxidants; Ascorbic Acid; Catechin; Copper; Flavonoids; Linoleic Acid; Lipid Peroxidation; Oxidation-Reduction; Protective Agents; Quercetin; Structure-Activity Relationship

2011
Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: structure-activity relationships.
    Chemico-biological interactions, 2012, May-30, Volume: 197, Issue:2-3

    Topics: Animals; Catechin; Cattle; Cytochrome-B(5) Reductase; Dietary Supplements; Enzyme Inhibitors; Flavanones; Flavones; Flavonoids; Glucosides; Inhibitory Concentration 50; Microsomes, Liver; Quercetin; Structure-Activity Relationship

2012
In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase.
    Toxicology, 2013, Jun-07, Volume: 308

    Topics: Animals; Apigenin; Catechin; Cattle; Cytochrome-B(5) Reductase; Cytochromes b5; Flavanones; Flavonoids; Microsomes, Liver; Protein Binding; Quercetin; Rabbits

2013
Simultaneous determination of 14 phenolic compounds in grape canes by HPLC-DAD-UV using wavelength switching detection.
    Molecules (Basel, Switzerland), 2013, Nov-18, Volume: 18, Issue:11

    Topics: Catechin; Chromatography, High Pressure Liquid; Coumarins; Flavonoids; Phenols; Quercetin; Resveratrol; Stilbenes; Ultraviolet Rays; Vitis

2013
Combinatorial Activity of Flavonoids with Antibiotics Against Drug-Resistant Staphylococcus aureus.
    Microbial drug resistance (Larchmont, N.Y.), 2015, Volume: 21, Issue:6

    Topics: Ampicillin; Anti-Bacterial Agents; Catechin; Ciprofloxacin; Drug Resistance, Multiple, Bacterial; Drug Therapy, Combination; Erythromycin; Flavonoids; Hesperidin; Humans; Microbial Sensitivity Tests; Oxacillin; Quercetin; Rutin; Staphylococcal Infections; Staphylococcus aureus; Tetracycline

2015