casein-kinase-ii and methionine-sulfoxide

casein-kinase-ii has been researched along with methionine-sulfoxide* in 1 studies

Other Studies

1 other study(ies) available for casein-kinase-ii and methionine-sulfoxide

ArticleYear
Clearance and phosphorylation of alpha-synuclein are inhibited in methionine sulfoxide reductase a null yeast cells.
    Journal of molecular neuroscience : MN, 2009, Volume: 39, Issue:3

    Aggregated alpha-synuclein and the point mutations Ala30Pro and Ala53Thr of alpha-synuclein are associated with Parkinson's disease. The physiological roles of alpha-synuclein and methionine oxidation of the alpha-synuclein protein structure and function are not fully understood. Methionine sulfoxide reductase A (MsrA) reduces methionine sulfoxide residues and functions as an antioxidant. To monitor the effect of methionine oxidation to alpha-synuclein on basic cellular processes, alpha-synucleins were expressed in msrA null mutant and wild-type yeast cells. Protein degradation was inhibited in the alpha-synuclein-expressing msrA null mutant cells compared to alpha-synuclein-expressing wild-type cells. Increased inhibition of degradation and elevated accumulations of fibrillated proteins were observed in SynA30P-expressing msrA null mutant cells. Additionally, methionine oxidation inhibited alpha-synuclein phosphorylation in yeast cells and in vitro by casein kinase 2. Thus, a compromised MsrA function combined with alpha-synuclein overexpression may promote processes leading to synucleinopathies.

    Topics: alpha-Synuclein; Amino Acid Sequence; Casein Kinase II; Gene Expression Regulation, Enzymologic; Gene Knockout Techniques; Methionine; Methionine Sulfoxide Reductases; Mutation; Neurofibrils; Oxidation-Reduction; Oxidative Phosphorylation; Oxidative Stress; Parkinson Disease; Saccharomyces cerevisiae; Up-Regulation

2009