casein-kinase-ii has been researched along with indole* in 3 studies
3 other study(ies) available for casein-kinase-ii and indole
Article | Year |
---|---|
"Janus" efficacy of CX-5011: CK2 inhibition and methuosis induction by independent mechanisms.
Methuosis has been described as a distinctive form of cell death characterized by the displacement of large fluid-filled vacuoles derived from uncontrolled macropinocytosis. Its induction has been proposed as a new strategy against cancer cells. Small molecules, such as indole-based calchones, have been identified as methuosis inducers and, recently, the CK2 inhibitor CX-4945 has been shown to have a similar effect on different cell types. However, the contribution of protein kinase CK2 to methuosis signalling is still controversial. Here we show that methuosis is not related to CK2 activity since it is not affected by structurally unrelated CK2 inhibitors and genetic reduction/ablation of CK2 subunits. Interestingly, CX-5011, a CK2 inhibitor related to CX-4945, behaves as a CK2-independent methuosis inducer, four times more powerful than its parental compound and capable to promote the formation on enlarged cytosolic vacuoles at low micromolar concentrations. We show that pharmacological inhibition of the small GTPase Rac-1, its downregulation by siRNA treatment, or the over-expression of the dominant-negative mutated form of Rac-1 (Rac-1 T17N), impairs CX-5011 ability to induce methuosis. Furthermore, cell treatment with CX-5011 induces a durable activation of Rac-1 that persists for at least 24 h. Worthy of note, CX-5011 is able to promote macropinocytosis not only in mammalian cells, but also in an in-vivo zebrafish model. Based on these evidences, CX-5011 is, therefore, proposed as a potential promising compound for cancer therapies for its dual efficacy as an inhibitor of the pro-survival kinase CK2 and inducer of methuosis. Topics: Casein Kinase II; Cell Death; CRISPR-Cas Systems; Gene Editing; Hep G2 Cells; Humans; Indoles; Neoplasms; Pinocytosis; Pyrimidines; Quinolines; rac1 GTP-Binding Protein; Vacuoles | 2020 |
Converting potent indeno[1,2-b]indole inhibitors of protein kinase CK2 into selective inhibitors of the breast cancer resistance protein ABCG2.
A series of indeno[1,2-b]indole-9,10-dione derivatives were synthesized as human casein kinase II (CK2) inhibitors. The most potent inhibitors contained a N(5)-isopropyl substituent on the C-ring. The same series of compounds was found to also inhibit the breast cancer resistance protein ABCG2 but with totally different structure-activity relationships: a N(5)-phenethyl substituent was critical, and additional hydrophobic substituents at position 7 or 8 of the D-ring or a methoxy at phenethyl position ortho or meta also contributed to inhibition. The best ABCG2 inhibitors, such as 4c, 4h, 4i, 4j, and 4k, behaved as very weak inhibitors of CK2, whereas the most potent CK2 inhibitors, such as 4a, 4p, and 4e, displayed limited interaction with ABCG2. It was therefore possible to convert, through suitable substitutions of the indeno[1,2-b]indole-9,10-dione scaffold, potent CK2 inhibitors into selective ABCG2 inhibitors and vice versa. In addition, some of the best ABCG2 inhibitors, which displayed a very low cytotoxicity, thus giving a high therapeutic ratio, and appeared not to be transported, constitute promising candidates for further investigations. Topics: ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Transporters; Biological Transport; Breast Neoplasms; Casein Kinase II; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Resistance, Neoplasm; Female; HEK293 Cells; Humans; Indoles; MCF-7 Cells; Mitoxantrone; Models, Chemical; Molecular Structure; Neoplasm Proteins; Protein Kinase Inhibitors | 2015 |
Indeno[1,2-b]indole derivatives as a novel class of potent human protein kinase CK2 inhibitors.
Herein we describe the synthesis and properties of indeno[1,2-b]indole derivatives as a novel class of potent inhibitors of the human protein kinase CK2. A set of 19 compounds was obtained using a convenient and straightforward synthesis protocol. The compounds were tested for inhibition of human protein kinase CK2, which was recombinantly expressed in Escherichia coli. New inhibitors with IC(50) in the micro- and sub-micromolar range were identified. Compound 4b (5-isopropyl-7,8-dihydroindeno[1,2-b]indole-9,10(5H,6H)-dione) inhibited human CK2 with an IC(50) of 0.11 μM and did not significantly inhibit 22 other human protein kinases, suggesting selectivity towards CK2. ATP-competitive inhibition by compound 4b was shown and a K(i) of 0.06 μM was determined. Our findings indicate that indeno[1,2-b]indoles are a promising starting point for further development and optimization of human protein kinase CK2 inhibitors. Topics: Casein Kinase II; Cell Membrane Permeability; Humans; Indoles; Kinetics; Protein Kinase Inhibitors; Stereoisomerism | 2012 |