casein-kinase-ii has been researched along with 4-nitrobenzylthioinosine* in 2 studies
2 other study(ies) available for casein-kinase-ii and 4-nitrobenzylthioinosine
Article | Year |
---|---|
Subtype-specific regulation of equilibrative nucleoside transporters by protein kinase CK2.
Two subtypes of equilibrative transporters, es (equilibrative inhibitor-sensitive) and ei (equilibrative inhibitor-insensitive), are responsible for the majority of nucleoside flux across mammalian cell membranes. Sequence analyses of the representative genes, ENT1 {equilibrative nucleoside transporter 1; also known as SLC29A1 [solute carrier family 29 (nucleoside transporters), member 1]} and ENT2 (SLC29A2), suggest that protein kinase CK2-mediated phosphorylation may be involved in the regulation of es- and ei-mediated nucleoside transport. We used human osteosarcoma cells transfected with catalytically active or inactive alpha' and alpha subunits of CK2 to assess the effects of CK2 manipulation on nucleoside transport activity. Expression of inactive CK2alpha' (decreased CK2alpha' activity) increased the number of binding sites (approximately 1.5-fold) for the es-specific probe [3H]NBMPR ([3H]nitrobenzylthioinosine), and increased (approximately 1.8-fold) the V(max) for 2-chloro[3H]adenosine of the NBMPR-sensitive (es) nucleoside transporter. There was a concomitant decrease in the V(max) of the NBMPR-resistant (ei-mediated) uptake of 2-chloro[3H]adenosine. This inhibition of CK2alpha' activity had no effect, however, on either the K(D) of [3H]NBMPR binding or the K(m) of 2-chloro[3H]adenosine uptake. Quantitative PCR showed a transient decrease in the expression of both hENT1 (human ENT1) and hENT2 mRNAs within 4-12 h of induction of the inactive CK2alpha' subunit, but both transcripts had returned to control levels by 24 h. These data suggest that inhibition of CK2alpha' reduced ei activity by attenuation of hENT2 transcription, while the increase in es/hENT1 activity was mediated by post-translational action of CK2. The observed modification in es activity was probably due to a CK2alpha'-mediated change in the phosphorylation state of the ENT1 protein, or an interacting protein, effecting an increase in the plasma membrane lifetime of the transport proteins. Topics: 2-Chloroadenosine; Bone Neoplasms; Casein Kinase II; Catalytic Domain; Cell Line, Tumor; Computer Systems; Equilibrative Nucleoside Transporter 1; Equilibrative-Nucleoside Transporter 2; Formycins; Gene Expression Regulation, Neoplastic; Humans; Nucleosides; Osteosarcoma; Polymerase Chain Reaction; Substrate Specificity; Thioinosine; Transfection; Tritium | 2005 |
Cloning of a novel isoform of the mouse NBMPR-sensitive equilibrative nucleoside transporter (ENT1) lacking a putative phosphorylation site.
We have isolated a mouse cDNA clone corresponding to a novel isoform of the NBMPR-sensitive equilibrative nucleoside transporter (ENT1). The cDNA contains a 6 bp deletion in the open reading frame that changes the amino acid composition in a consensus casein kinase II (CKII) phosphorylation site at Ser-254. The clone containing Ser-254 is termed mENT1.1 and the clone lacking the serine termed mENT1.2. The deduced amino acid sequence of mENT1.1 corresponds to the previously cloned human and rat ENT1 proteins at Ser-254. Tissue distribution studies show that mRNA for both ENT1 isoforms are ubiquitously co-expressed in mouse. Analysis of genomic DNA corresponding to mouse ENT1 indicates the isoforms can be produced by alternative splicing at the end of exon 7. CEM/C19 cells stably expressing mENT1.1 and mENT1.2 show similar dose response curves for NBMPR and dipyridamole inhibition of [(3)H]adenosine uptake as well as exhibiting comparable selectivity for both purine and pyrimidine nucleosides but not the corresponding nucleobases. Topics: Amino Acid Sequence; Animals; Carrier Proteins; Casein Kinase II; Cloning, Molecular; Dipyridamole; Equilibrative Nucleoside Transporter 1; Gene Expression Regulation; Humans; Inhibitory Concentration 50; Leukemia, T-Cell; Membrane Proteins; Mice; Molecular Sequence Data; Nucleoside Transport Proteins; Phosphorylation; Protein Isoforms; Protein Serine-Threonine Kinases; Rats; Sequence Homology, Amino Acid; Thioinosine; Tumor Cells, Cultured | 2001 |