caryophyllene has been researched along with methyleugenol* in 4 studies
4 other study(ies) available for caryophyllene and methyleugenol
Article | Year |
---|---|
Five hTRPA1 Agonists Found in Indigenous Korean Mint, Agastache rugosa.
Transient receptor potential ankyrin1 (TRPA1) and transient receptor potential vanilloid 1 (TRPV1) are members of the TRP superfamily of structurally related, nonselective cation channels and mediators of several signaling pathways. Previously, we identified methyl syringate as an hTRPA1 agonist with efficacy against gastric emptying. The aim of this study was to find hTRPA1 and/or hTRPV1 activators in Agastache rugosa (Fisch. et Meyer) O. Kuntze (A.rugosa), commonly known as Korean mint to improve hTRPA1-related phenomena. An extract of the stem and leaves of A.rugosa (Labiatae) selectively activated hTRPA1 and hTRPV1. We next investigated the effects of commercially available compounds found in A.rugosa (acacetin, 4-allylanisole, p-anisaldehyde, apigenin 7-glucoside, L-carveol, β-caryophyllene, trans-p-methoxycinnamaldehyde, methyl eugenol, pachypodol, and rosmarinic acid) on cultured hTRPA1- and hTRPV1-expressing cells. Of the ten compounds, L-carveol, trans-p-methoxycinnamaldehyde, methyl eugenol, 4-allylanisole, and p-anisaldehyde selectively activated hTRPA1, with EC50 values of 189.1±26.8, 29.8±14.9, 160.2±21.9, 1535±315.7, and 546.5±73.0 μM, respectively. The activities of these compounds were effectively inhibited by the hTRPA1 antagonists, ruthenium red and HC-030031. Although the five active compounds showed weaker calcium responses than allyl isothiocyanate (EC50=7.2±1.4 μM), our results suggest that these compounds from the stem and leaves of A.rugosa are specific and selective agonists of hTRPA1. Topics: Acetanilides; Agastache; Allylbenzene Derivatives; Anisoles; Benzaldehydes; Calcium Channels; Cell Line; Cyclohexane Monoterpenes; Eugenol; HEK293 Cells; Humans; Monoterpenes; Nerve Tissue Proteins; Plant Extracts; Plant Leaves; Plant Stems; Polycyclic Sesquiterpenes; Purines; Ruthenium Red; Sesquiterpenes; Transient Receptor Potential Channels; TRPA1 Cation Channel; TRPV Cation Channels | 2015 |
First evidence of a volatile sex pheromone in lady beetles.
To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas), which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited "calling behavior", which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance) of males. Gas Chromatography-Mass Spectrometry (GC-MS) analyses revealed that (-)-β-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%), with four other chemical components also being present; β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle. Topics: Animals; Aphids; Coleoptera; Eating; Eugenol; Gas Chromatography-Mass Spectrometry; Monocyclic Sesquiterpenes; Polycyclic Sesquiterpenes; Sesquiterpenes; Sesquiterpenes, Guaiane; Sex Attractants; Sexual Behavior, Animal | 2014 |
Chemical composition of the essential oil of Feronia elephantum Correa.
The essential oil composition of Feronia elephantum Correa (family: Rutaceae) was examined by capillary gas chromatography (GC) and gas chromatography-mass spectroscopy (GC-MS). The analysis revealed the presence of 24 constituents, of which 18 constituents were identified. Trans-anethole (57.73%) and methyl chavicol (37.48%) were the major compounds, while cis-anethole, p-anisaldehyde, (E)-jasmone, methyl eugenol, β-caryophyllene, linalool and (E)-methyl isoeugenol were also present as the minor constituents. Topics: Acyclic Monoterpenes; Allylbenzene Derivatives; Anisoles; Benzaldehydes; Chromatography, Gas; Cyclopentanes; Eugenol; Gas Chromatography-Mass Spectrometry; Monoterpenes; Oils, Volatile; Oxylipins; Polycyclic Sesquiterpenes; Rutaceae; Sesquiterpenes | 2010 |
Identification of volatile components in Phyllanthus emblica L. and their antimicrobial activity.
The volatile components and in vitro antimicrobial activities of Emblica (Phyllanthus emblica L.) essential oils (EOs) obtained by hydrodistillation (HD-EO) and supercritical fluid extraction (SFE-EO) were investigated. The compositions of volatile compounds in these oils were tentatively determined by gas chromatography-mass spectrometry. The antimicrobial activites of these two extracts were investigated with microbiological tests against Gram-positive and Gram-negative bacteria and three pathogenic fungi. The main components of both oils were beta-caryophyllene, beta-bourbonene, 1-octen-3-ol, thymol, and methyleugenol. Both essential oils showed a broad spectrum of antimicrobial activity against all the tested microorganisms. Gram-positive bacteria were more sensitive to the investigated oils than Gram-negative bacteria. SFE-EO exhibited a higher antifungal activity compared to HD-EO. Topics: Anti-Bacterial Agents; Antifungal Agents; Eugenol; Fruit; Microbial Sensitivity Tests; Octanols; Oils, Volatile; Phyllanthus emblica; Plant Oils; Polycyclic Sesquiterpenes; Sesquiterpenes; Thymol | 2009 |