caryophyllene has been researched along with citronellol* in 4 studies
4 other study(ies) available for caryophyllene and citronellol
Article | Year |
---|---|
Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia.
Rosemary (Rosmarinus officinalis L.) has been widely used as a traditional remedy for insomnia, depression and anxiety in China and Western countries. Modern pharmacological studies have shown that rosemary has important applications in neurological disorders. However, the mechanism of action of rosemary hydrosol in the treatment of insomnia is not known.. Insomnia is closely linked to anxiety and depression, and its pathogenesis is related to biology, psychology, and sociology. Rosemary is a natural plant that has been used to treat insomnia and depression and has good biological activity, but its material basis and mechanism for the treatment of insomnia are not clear. Here, we report on the role of aqueous extracts of rosemary in the treatment of insomnia.. The study was based on network pharmacology, using a combination of RNA-sequencing, "quantity-effect" weighting coefficients, and pharmacodynamic experiments. DL-4-chlorophenylalanine (PCPA) was intraperitoneally injected into SD rats to replicate the insomnia model with a blank, model, diazepam, and rosemary hydrosol low-, medium-, and high-dose groups were set up for the experiment. The key pathways in the treatment of insomnia with rosemary hydrosol were analyzed by molecular docking, open field assay, ELISA, western-Blot, Rt-PCR, and immunohistochemical assay.. Rosemary hydrosol was analyzed by GC-MS to identify 19 components. 1579 differential genes were obtained by RNA-Seq analysis, 533 targets for rosemary hydrosol and 2705 targets for insomnia, and 29 key targets were obtained by intersection. The KEGG results were ranked by "quantity-effect" weighting coefficients, resulting in serotonergic synapse was the key pathway for the treatment of insomnia with rosemary hydrosol. Molecular docking results showed that 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, 3-methyl-4-isopropylphenol, caryophyllene, and citronellol of rosemary hydrosol acted synergistically to achieve a therapeutic effect on insomnia. Caryophyllene acts on the HTR1A target by upregulating 5-HT1AR, leading to increased 5-HT release, and upregulation of ADCY5, cAMP, PKA and GABAA at serotonergic synapses; citronellol upregulated ADCY5 and 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, and 3-methyl-4-isopropylphenol up-regulated GABAA to improve insomnia symptoms. In open-field experiments, ELISA kits (5-HT, GABA, and DA), Western-blotting, Rt-PCR and immunohistochemical assay experiments, insomnia rats in the low-, medium- and high-dose groups of rosemary hydrosol showed different degrees of improvement compared with the model group.. It was shown that rosemary hydrosol may exert its therapeutic effects on insomnia through serotonergic synapses by combining RNA-Seq, "quantity-effect" weighting coefficients network pharmacology and pharmacodynamic experiments. We have provided a preliminary theoretical study for the development of rosemary hydrosol additive into a beverage for the treatment of insomnia, but it needs to be studied in depth. This study was conducted in rats and the results have limitations and may not apply to humans. Topics: Animals; Humans; Molecular Docking Simulation; Plant Extracts; Rats; Rats, Sprague-Dawley; Rosmarinus; Serotonin; Sleep Initiation and Maintenance Disorders | 2024 |
Identification of Floral Scent Profiles in Bearded Irises.
Bearded irises are ornamental plants with distinctive floral fragrance grown worldwide. To identify the floral scent profiles, twenty-seven accessions derived from three bearded iris, including Topics: Acyclic Monoterpenes; Flowers; Gas Chromatography-Mass Spectrometry; Iris Plant; Monoterpenes; Odorants; Perfume; Polycyclic Sesquiterpenes; Sesquiterpenes; Solid Phase Microextraction; Terpenes; Volatile Organic Compounds | 2019 |
Composition and antioxidant activity of Senecio nudicaulis Wall. ex DC. (Asteraceae): a medicinal plant growing wild in Himachal Pradesh, India.
The composition of essential oil isolated from Senecio nudicaulis Wall. ex DC. growing wild in Himachal Pradesh, India, was analysed, for the first time, by capillary gas chromatography (GC) and GC-mass spectrometry. A total of 30 components representing 95.3% of the total oil were identified. The essential oil was characterised by a high content of oxygenated sesquiterpenes (54.97%) with caryophyllene oxide (24.99%) as the major component. Other significant constituents were humulene epoxide-II (21.25%), α-humulene (18.75%), β-caryophyllene (9.67%), epi-α-cadinol (2.90%), epi-α-muurolol (2.03%), β-cedrene (1.76%), longiborneol (1.76%), 1-tridecene (1.16%) and citronellol (1.13%). The oil was screened for antioxidant activity using DPPH, ABTS and nitric oxide-scavenging assay. The oil was found to exhibit significant antioxidant activity by scavenging DPPH, ABTS and nitric oxide radicals with IC50 values of 10.61 ± 0.14 μg mL(- 1), 11.85 ± 0.28 μg mL(- 1) and 11.29 ± 0.42 μg mL(- 1), respectively. Topics: Acyclic Monoterpenes; Alkenes; Antioxidants; Gas Chromatography-Mass Spectrometry; India; Monocyclic Sesquiterpenes; Monoterpenes; Oils, Volatile; Plant Oils; Plants, Medicinal; Polycyclic Sesquiterpenes; Senecio; Sesquiterpenes; Terpenes | 2015 |
Airborne antituberculosis activity of Eucalyptus citriodora essential oil.
The rapid emergence of multi- and extensively drug-resistant tuberculosis (MDR/XDR-TB) has created a pressing public health problem, which mostly affects regions with HIV/AIDS prevalence and represents a new constraint in the already challenging disease management of tuberculosis (TB). The present work responds to the need to reduce the number of contagious MDR/XRD-TB patients, protect their immediate environment, and interrupt the rapid spread by laying the groundwork for an inhalation therapy based on anti-TB-active constituents of the essential oil (EO) of Eucalyptus citriodora. In order to address the metabolomic complexity of EO constituents and active principles in botanicals, this study applied biochemometrics, a 3-D analytical approach that involves high-resolution CCC fractionation, GC-MS analysis, bioactivity measurements, and chemometric analysis. Thus, 32 airborne anti-TB-active compounds were identified in E. citriodora EO: the monoterpenes citronellol (1), linalool (3), isopulegol (5), and α-terpineol (7) and the sesquiterpenoids spathulenol (11), β-eudesmol (23), and τ-cadinol (25). The impact of the interaction of multiple components in EOs was studied using various artificial mixtures (AMxs) of the active monoterpenes 1, 2, and 5 and the inactive eucalyptol (33). Both neat 1 and the AMx containing 1, 2, and 33 showed airborne TB inhibition of >90%, while the major E. citriodora EO component, 2, was only weakly active, at 18% inhibition. Topics: Acyclic Monoterpenes; Antitubercular Agents; Cyclohexane Monoterpenes; Cyclohexanols; Cyclohexenes; Databases, Factual; Eucalyptol; Eucalyptus; Female; Gas Chromatography-Mass Spectrometry; Humans; Male; Molecular Structure; Monoterpenes; Oils, Volatile; Plant Leaves; Sesquiterpenes, Eudesmane; Tuberculosis; Tuberculosis, Multidrug-Resistant | 2014 |