caryophyllene and beta-pinene

caryophyllene has been researched along with beta-pinene* in 28 studies

Other Studies

28 other study(ies) available for caryophyllene and beta-pinene

ArticleYear
Nutritive value of active volatile components of Anacardiaceae mango and their effects on carrier proteins function.
    Food research international (Ottawa, Ont.), 2023, Volume: 168

    The effects of mango active volatile components (VOCs) on protein function were investigated from the perspective of nutrient transport. The active volatile components of five varieties of mango were analyzed by headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME/GC-MS). The interaction mechanism between active volatile components and three carrier proteins was discussed by fluorescence spectroscopy, molecular docking and dynamic simulation. The results showed that there were 7 active components in the five mango varieties. The aroma components represented by 1-caryophyllene and β-pinene were selected for further study. The interaction between VOCs small molecules and proteins is a static binding process, and its main force is hydrophobic interaction. The results of molecular simulation and spectral experiments showed that the binding ability of 1-caryophyllene and β-pinene to β-Lg was strong, so mango VOCs could possess a certain nutritional value in dairy products, expanding its application in dairy products in the food industry.

    Topics: Anacardiaceae; Carrier Proteins; Mangifera; Molecular Docking Simulation

2023
Volatile Composition, Antimicrobial Activity, and In Vitro Innate Immunomodulatory Activity of
    Molecules (Basel, Switzerland), 2023, Oct-29, Volume: 28, Issue:21

    Topics: Anti-Infective Agents; Calcium; Echinacea; Gas Chromatography-Mass Spectrometry; Humans; Oils, Volatile; Steam

2023
GC-MS analysis of the volatile constituents of
    Natural product research, 2020, Volume: 34, Issue:3

    The hydro-distilled essential oil from aerial parts of

    Topics: Bicyclic Monoterpenes; Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Lamiaceae; Monocyclic Sesquiterpenes; Oils, Volatile; Orthosiphon; Polycyclic Sesquiterpenes; Sesquiterpenes

2020
Chemical Characterization and Evaluation of the Antibacterial Activity of Essential Oils from Fibre-Type
    Molecules (Basel, Switzerland), 2019, Jun-21, Volume: 24, Issue:12

    Volatile terpenes represent the largest group of

    Topics: Acyclic Monoterpenes; Anti-Bacterial Agents; Bacteria; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cannabinoids; Cannabis; Gas Chromatography-Mass Spectrometry; Microbial Sensitivity Tests; Monoterpenes; Oils, Volatile; Plant Extracts; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes

2019
Jasmonic acid changes the composition of essential oil isolated from narrow-leaved lavender propagated in in vitro cultures.
    Natural product research, 2018, Volume: 32, Issue:7

    The aim of the present study was to determine the effect of jasmonic acid added to the culture medium on composition of Lavandula angustifolia essential oils. The chemical composition was determined by gas chromatography coupled to mass detector (GC/MS). The experiment was conducted with the use of MS medium supplemented with increasing concentration of JA (0.2, 0.5, 1, 1.5 mg∙dm

    Topics: Acetates; Acyclic Monoterpenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cell Culture Techniques; Culture Media; Cyclohexanols; Cyclopentanes; Eucalyptol; Gas Chromatography-Mass Spectrometry; Lavandula; Monoterpenes; Oils, Volatile; Oxylipins; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes

2018
Essential oils Constituents of the leaves of Amomum gagnepainii and Amomum repoense.
    Natural product research, 2018, Volume: 32, Issue:3

    The chemical constituents identified in the essential oils hydrodistilled from the leaves of Amomum gagnepainii T.L.Wu, K.Larsen and Turland and Amomum repoense Pierre ex Gagnep (Zingiberaceae) of Vietnam origin are reported. The chemical analyses were performed by means of gas chromatography-flame ionisation detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC-MS). The main compounds of A. gagnepainii were farnesyl acetate (18.5%), zerumbone (16.4%) and β-caryophyllene (10.5%). On the other hand, Amomum repoense comprised of monoterpenes dominated by β-pinene (33.5%), (E)-β-ocimene (9.6%), γ-terpinene (9.1%) and α-pinene (8.4%). This is the first report on the essential oils of A. gagnepainii and A. repoense grown in Vietnam or elsewhere.

    Topics: Acyclic Monoterpenes; Alkenes; Amomum; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Oils; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes; Vietnam; Zingiberaceae

2018
Structural Transformation Detection Contributes to Screening of Behaviorally Active Compounds: Dynamic Binding Process Analysis of DhelOBP21 from Dastarcus helophoroides.
    Journal of chemical ecology, 2017, Volume: 43, Issue:11-12

    In light of reverse chemical ecology, the fluorescence competitive binding assays of functional odorant binding proteins (OBPs) is a recent advanced approach for screening behaviorally active compounds of insects. Previous research on Dastareus helophoroides identified a minus-C OBP, DhelOBP21, which preferably binds to several ligands. In this study, only (+)-β-pinene proved attractive to unmated adult beetles. To obtain a more in-depth explanation of the lack of behavioral activity of other ligands we selected compounds with high (camphor) and low (β-caryophyllene) binding affinities. The structural transformation of OBPs was investigated using well-established approaches for studying binding processes, such as fluorescent quenching assays, circular dichroism, and molecular dynamics. The dynamic binding process revealed that the flexibility of DhelOBP21 seems conducive to binding specific ligands, as opposed to broad substrate binding. The compound (+)-β-pinene and DhelOBP21 formed a stable complex through a secondary structural transformation of DhelOBP21, in which its amino-terminus transformed from random coil to an α-helix to cover the binding pocket. On the other hand, camphor could not efficiently induce a stable structural transformation, and its high binding affinities were due to strong hydrogen-bonding, compromising the structure of the protein. The other compound, β-caryophyllene, only collided with DhelOBP21 and could not be positioned in the binding pocket. Studying structural transformation of these proteins through examining the dynamic binding process rather than using approaches that just measure binding affinities such as fluorescence competitive binding assays can provide a more efficient and reliable approach for screening behaviorally active compounds.

    Topics: Animals; Behavior, Animal; Bicyclic Monoterpenes; Binding Sites; Bridged Bicyclo Compounds; Circular Dichroism; Coleoptera; Insect Proteins; Molecular Dynamics Simulation; Monoterpenes; Polycyclic Sesquiterpenes; Receptors, Odorant; Recombinant Proteins; RNA Interference; RNA, Double-Stranded; Sesquiterpenes; Spectrometry, Fluorescence

2017
Chemical analysis of essential oils from different parts of Ferula communis L. growing in central Italy.
    Natural product research, 2016, Volume: 30, Issue:7

    Ferula communis is a showy herbaceous plant typical of the Mediterranean area where it is used as a traditional medicine. The plant is a source of bioactive compounds such as daucane sesquiterpenes and prenylated coumarins. In Italy, most of phytochemical studies focused on Sardinian populations where poisonous and nonpoisonous chemotypes were found, while investigations on peninsular populations are scarce. In this work, we report the chemical characterisation of the essential oils obtained from different parts of F. communis growing in central Italy. The chemical profiles of the plant parts, as detected by GC-FID and GC-MS, were different from each other and from those reported in insular populations. Notably, α-pinene (10.5%), γ-terpinene (7.6%) and hedycariol (8.4%) were the major volatile constituents in flowers; α-pinene (55.9%), β-pinene (16.8%) and myrcene (5.9%) in fruits; β-eudesmol (12.1%), α-eudesmol (12.1%) and hedycariol (10.3%) in leaves; (E)-β-farnesene (9.5%), β-cubebene (8.2%) and (E)-caryophyllene (7.2%) in roots. The volatile profiles detected did not allow to classify the investigated central Italy population into the poisonous and nonpoisonous chemotypes previously described in Sardinia.

    Topics: Acyclic Monoterpenes; Alkenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Coumarins; Cyclohexane Monoterpenes; Ferula; Flowers; Fruit; Gas Chromatography-Mass Spectrometry; Italy; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Roots; Polycyclic Sesquiterpenes; Sesquiterpenes; Sesquiterpenes, Eudesmane

2016
Study on essential oils from the leaves of two Vietnamese plants: Jasminum subtriplinerve C.L. Blume and Vitex quinata (Lour) F.N. Williams.
    Natural product research, 2016, Volume: 30, Issue:7

    The essential oil constituents of the leaves of Jasminum subtriplinerve (Oleaceae) and Vitex quinata (Verbanaceae) cultivated in Vietnam were analysed by gas chromatography--flame ionisation detector (GC-FID) and gas chromatography--mass spectrometry (GC-MS) techniques. The main constituents identified in J. subtriplinerve were mainly oxygenated monoterpenes represented by linalool (44.2%), α-terpineol (15.5%), geraniol (19.4%) and cis-linalool oxide (8.8%). The quantitative significant components of V. quinata were terpene hydrocarbons comprising of β-pinene (30.1%), β-caryophyllene (26.9%) and β-elemene (7.4%). The chemical compositions of the essential oils are being reported for the first time.

    Topics: Acyclic Monoterpenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cyclohexenes; Flame Ionization; Gas Chromatography-Mass Spectrometry; Jasminum; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Oils; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes; Vietnam; Vitex

2016
Chemical composition, aroma evaluation, and inhibitory activity towards acetylcholinesterase of essential oils from Gynura bicolor DC.
    Journal of natural medicines, 2016, Volume: 70, Issue:2

    The compositions of the essential oils obtained from leaves and stems of Gynura bicolor DC. were analyzed by GC-MS. One hundred eight components of these oils were identified. (E)-β-caryophyllene (31.42 %), α-pinene (17.11 %), and bicyclogermacrene (8.09 %) were found to be the main components of the leaf oil, while α-pinene (61.42 %), β-pinene (14.39 %), and myrcene (5.10 %) were the major constituents of the stem oil. We found 73 previously unidentified components in these oils from G. bicolor. The oils were also subjected to odor evaluation. Eleven and 12 aroma-active compounds were detected in the leaf and stem oils, respectively. The abilities of these oils to inhibit acetylcholinesterase (AChE) activity were determined. The sesquiterpenoids in the oils were found to inhibit AChE activity more strongly than the monoterpenoids in the oils did. It was suggested that the three main components in each essential oil act synergistically against AChE activity. These results show that the essential oils obtained from G. bicolor are a good dietary source of AChE activity inhibition.

    Topics: Acetylcholinesterase; Acyclic Monoterpenes; Alkenes; Asteraceae; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cholinesterase Inhibitors; Gas Chromatography-Mass Spectrometry; Humans; Monoterpenes; Odorants; Oils, Volatile; Plant Extracts; Plant Leaves; Plant Stems; Polycyclic Sesquiterpenes; Sesquiterpenes

2016
Essential-Oil Variability in Natural Populations of Pinus mugo Turra from the Julian Alps.
    Chemistry & biodiversity, 2016, Volume: 13, Issue:2

    The composition and variability of the terpenes and their derivatives isolated from the needles of a representative pool of 114 adult trees originating from four natural populations of dwarf mountain pine (Pinus mugo Turra) from the Julian Alps were investigated by GC-FID and GC/MS analyses. In total, 54 of the 57 detected essential-oil components were identified. Among the different compound classes present in the essential oils, the chief constituents belonged to the monoterpenes, comprising an average content of 79.67% of the total oil composition (74.80% of monoterpene hydrocarbons and 4.87% of oxygenated monoterpenes). Sesquiterpenes were present in smaller amounts (average content of 19.02%), out of which 16.39% were sesquiterpene hydrocarbons and 2.62% oxygenated sesquiterpenes. The most abundant components in the needle essential oils were the monoterpenes δ-car-3-ene, β-phellandrene, α-pinene, β-myrcene, and β-pinene and the sesquiterpene β-caryophyllene. From the total data set of 57 detected compounds, 40 were selected for principal-component analysis (PCA), discriminant analysis (DA), and cluster analysis (CA). The overlap tendency of the four populations suggested by PCA, was as well observed by DA. CA also demonstrated similarity among the populations, which was the highest between Populations I and II.

    Topics: Acyclic Monoterpenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cluster Analysis; Cyclohexane Monoterpenes; Cyclohexenes; Gas Chromatography-Mass Spectrometry; Monoterpenes; Oils, Volatile; Pinus; Polycyclic Sesquiterpenes; Principal Component Analysis; Sesquiterpenes

2016
Volatile constituents of Amomum maximum Roxb and Amomum microcarpum C. F. Liang & D. Fang: two Zingiberaceae grown in Vietnam.
    Natural product research, 2015, Volume: 29, Issue:15

    The chemical composition of essential oils obtained from the hydrodistillation of different parts of Amomum maximum Roxb and Amomum muricarpum C. F. Liang & D. Fang (Zingiberaceae) grown in Vietnam are reported. The analysis was performed by means of gas chromatography-flame ionisation detectoorand gas chromatography coupled with mass spectrometry. The major compounds identified in the oils of A. maximum were β-pinene (20.4-40.8%), α-pinene (6.8-15.0%), β-elemene (2.5-12.8%) and β-caryophyllene (2.3-10.3%). Moreover, β-phellandrene (11.6%) was present in the root oil. The main compound identified in all the oil samples of A. muricarpum was α-pinene (24.1-54.7%) and β-pinene (9.2-25.9%). In addition, limonene (7.4%) and δ-3-carene (9.4%) were present in the leaves and stem oils, respectively. However, while β-phellandrene (8.3%) could be seen prominent in the root oil, the fruits contained significant amount of zingiberene (6.3%). The largest amount of τ-muurolol (13.0%) was found in the flower oil.

    Topics: Amomum; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cyclohexenes; Gas Chromatography-Mass Spectrometry; Limonene; Monocyclic Sesquiterpenes; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Oils; Plant Roots; Plant Stems; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes; Vietnam; Volatile Organic Compounds

2015
Essential Oil of Amomum maximum Roxb. and Its Bioactivities against Two Stored-Product Insects.
    Journal of oleo science, 2015, Volume: 64, Issue:12

    Amomum maximum Roxb. is a perennial herb distributed in South China and Southeast Asia. The objective of this work was to analyze the chemical constituents and assess insecticidal and repellent activities of the essential oil from Amomum maximum fruits against Tribolium castaneum (Herbst) and Liposcelis bostrychophila (Badonnel). The essential oil was obtained by hydrodistillation and analyzed by gas chromatography-flame ionization detector and gas chromatography-mass spectrometry. The main components of the essential oil were identified to be β-pinene (23.39%), β-caryophyllene (16.43%), α-pinene (7.55%), sylvestrene (6.61%) and ç-cadinene (4.19%). It was found that the essential oil of A. maximum fruits possessed contact and fumigant toxicities against T. castaneum adults (LD50 = 29.57 μg/adult and LC(50) = 23.09 mg/L air, respectively) and showed contact toxicity against L. bostrychophila (LD(50) = 67.46 μg/cm(2)). Repellency of the crude oil was also evaluated. After 2 h treatment, the essential oil possessed 100% repellency at 78.63 nL/cm(2) against T. castaneum and 84% repellency at 63.17 nL/cm(2) against L. bostrychophila. The results indicated that the essential oil of A. maximum fruits had the potential to be developed as a natural insecticide and repellent for control of T. castaneum and L. bostrychophila.

    Topics: Amomum; Animals; Asia, Southeastern; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; China; Distillation; Flame Ionization; Fruit; Fumigation; Gas Chromatography-Mass Spectrometry; Insect Repellents; Insecticides; Lethal Dose 50; Monoterpenes; Oils, Volatile; Plant Oils; Polycyclic Sesquiterpenes; Sesquiterpenes; Tribolium

2015
Study on gas chromatography-mass spectrometry fingerprint of Acanthopanax brachypus.
    Journal of chromatographic science, 2014, Volume: 52, Issue:8

    As a peculiar folk medicinal plant, Acanthopanax brachypus was widely used to treat various diseases in China. At present, however, there is not a good quality standard for its quality evaluation. In this study, on the basis of the validation tests of precision, stability and repeatability, the chromatographic fingerprint of A. brachypus was established by using gas chromatography (GC)-flame ionization detector (FID) and GC-MS techniques, as well as computer aided similarity evaluation system. Thirty-two different batches of samples collected from the different producing regions and the different parts of A. brachypus were studied. The results showed that the dominant constituents of all oils were monoterpenes and sesquiterpenes, as well as oxygenated monoterpenes and sesquiterpenes. The fingerprinting profiles were found to be consistent for the fresh stem bark acquired from various production areas, 48 common peaks were determined, but the relative abundance of peaks was varied. β-Pinene, linalool, p-cymene, spathulenol, camphene, endo-borneol, verbenone, β-caryophyllene, γ-terpinene, germacrene-D, camphor, β-thujone and β-cadinene were the main constituents of the fresh stem bark oil. Except for the leaf, the chemical components among different medicinal parts of fresh plant were inconsistent with the stem bark. Besides, the varieties and relative levels of chemical components in the fresh stem bark were more abundant than in the dry counterpart. The GC-MS fingerprint can be successfully applied to distinguish the substitute or adulterant, and further assess the differences of A. brachypus grown in various areas of China.

    Topics: Acyclic Monoterpenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cymenes; Eleutherococcus; Gas Chromatography-Mass Spectrometry; Monoterpenes; Polycyclic Sesquiterpenes; Sesquiterpenes; Sesquiterpenes, Germacrane; Terpenes

2014
Chemical composition of essential oils from the leaves and stem barks of Vietnamese species of Polyalthia harmandii, Polyalthia jucunda and Polyalthia thorelii.
    Natural product research, 2014, Volume: 28, Issue:8

    This article reports the chemical components identified in the essential oil from the leaf and stem barks of Polyalthia harmandii (Pierre) Fin. and Gagnep., Polyalthia jucunda (Pierre) Fin. and Gagnep. and Polyalthia thorelii (Pierre) Fin. and Gagnep. The compounds identified in all the samples were α-pinene (0.2-3.2%), myrcene (0.3-4.1%), (E)-β-ocimene (0.2-9.6%), bicycloelemene (0.2-18.0%), β-elemene (0.3-4.9%), β-caryophyllene (0.1-17.8%), germacrene D (4.4-20.1%), bicyclogermacrene (4.2-27.9%) and δ-cadinene (0.2-4.5%). Besides, benzyl benzoate (9.7%) and ishwarane (8.0%), respectively, were the other prominent compounds in the leaf and stem of P. harmandii. In addition, δ-3-carene (8.2%), α-amorphene (6.5%), β-phellandrene (5.5%) and β-pinene (5.1%) were identified in P. jucunda leaf, while sabinene (30.9%) and β-phellandrene (10.2%) occurred largely in the stem. Moreover, γ-elemene (22.3% and 12.3%), germacrene D (10.5% and 6.9%) and spathulenol (9.1% and 11.8%) were identified in the leaf and stem of P. thorelii, while α-terpinene (7.8%) and β-gurjunene (5.2%) were identified only in the leaf oil.

    Topics: Acyclic Monoterpenes; Alkenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cyclohexenes; Cyclopropanes; Monoterpenes; Oils, Volatile; Plant Leaves; Plant Stems; Polyalthia; Polycyclic Sesquiterpenes; Sesquiterpenes; Vietnam

2014
Secondary organic aerosol formation and organic nitrate yield from NO3 oxidation of biogenic hydrocarbons.
    Environmental science & technology, 2014, Oct-21, Volume: 48, Issue:20

    The secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m(3) indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38-65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m(-3), suggesting that model mechanisms that treat all NO3 + monoterpene reactions equally will lead to errors in predicted SOA depending on each location's mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.

    Topics: Aerosols; Air Pollutants; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexenes; Kinetics; Limonene; Monoterpenes; Nitrates; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes; Volatile Organic Compounds

2014
Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils.
    Chinese journal of natural medicines, 2014, Volume: 12, Issue:12

    Essential oils of the resins of Pinus brutia and Pinus pinea were evaluated for their biological potential. Essential oils were characterized using GC-MS and GC/FID. in vitro antimicrobial, phytotoxic, antioxidant, and insecticidal activities were carried out using the direct contact and the fumigant assays, respectively. The chemical profile of the essential oils of the resins of P. pinea and P. brutia included mainly α-pinene (21.39% and 25.40%), β-pinene (9.68% and 9.69%), and caryophyllene (9.12% and 4.81%). The essential oils of P. pinea and P. brutia exerted notable antimicrobial activities on Micrococcus luteus and Bacillus subtilis, insecticidal activities on Ephestia kuehniella eggs, phytotoxic activities on Lactuca sativa, Lepidium sativum, and Portulaca oleracea, as well as antioxidant potential. Indications of the biological activities of the essential oils suggest their use in the formulation of ecofriendly and biocompatible pharmaceuticals.

    Topics: Animals; Anti-Infective Agents; Antioxidants; Bacillus subtilis; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Gas Chromatography-Mass Spectrometry; Insecta; Insecticides; Lactuca; Lepidium; Mediterranean Region; Micrococcus luteus; Monoterpenes; Oils, Volatile; Pinus; Plant Extracts; Plant Oils; Polycyclic Sesquiterpenes; Portulaca; Resins, Plant; Sesquiterpenes; Terpenes

2014
The case of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. essential oils: chemical composition and antimicrobial activity.
    Journal of pharmaceutical and biomedical analysis, 2013, Apr-15, Volume: 77

    The chemical composition and antimicrobial activity studies on the essential oils of Hypericum rochelii Griseb. & Schenk and Hypericum umbellatum A. Kern. have been carried out for the first time. Seventy-nine compounds were identified in the essential oil of H. rochelii with n-nonane (24.7%), β-pinene (22.4%), germacrene D (7.5%), n-undecane (6.8%) and α-pinene (5.8%) as main constituents. One hundred and twenty-six compounds were identified in H. umbellatum essential oil with germacrene D (6.1%), (E)-nerolidol (4.4%), n-nonane (4.0%), (E)-caryophyllene (3.0%) and caryophyllene oxide (3.0%) as the most abundant components. Both oils were characterized by the presence of many components which could have numerous applications in food, pharmaceutical and perfume industries. Taxa studied herein belong to the section Drosocarpium Spach, and their intrasectional placement based on the essential oil profiles was discussed. The oils were tested in a broth microdilution assay against five bacterial and two fungal strains and found to have mainly moderate antimicrobial effects.

    Topics: Alkanes; Anti-Infective Agents; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Hypericum; Monoterpenes; Oils, Volatile; Plant Extracts; Polycyclic Sesquiterpenes; Sesquiterpenes; Sesquiterpenes, Germacrane

2013
A comparative analysis of essential oils of Goniothalamus macrocalyx Ban., Goniothalamus albiflorus Ban. and Goniothalamus tamirensis Pierre ex Fin. & Gagnep. from Vietnam.
    Natural product research, 2013, Volume: 27, Issue:21

    Essential oils hydrodistilled from the leaves and stem barks of Goniothalamus macrocalyx Ban., Goniothalamus albiflorus Ban. and Goniothalamus tamirensis Pierre ex Fin. & Gagnep. growing in Vietnam were analysed by gas chromatography (GC) and GC-coupled with mass spectrometry. α-Pinene (1.7-50.0%), β-pinene (tr-6.8%), β-myrcene (tr-1.5%), (E)-β-ocimene (tr-4.6%), β-caryophyllene (9.9-12.8%), aromadendrene (0.2-6.0%), α-humulene (1.7-6.9%), α-cadinol (1.2-14.5%), δ-cadinene (0.1-10.3%) and n-hexadecanoic acid (0.2-1.9%) were common to the oil samples. α-Pinene (50.0%) was the most abundant single constituent of the leaf oil of G. macrocalyx, whereas the major compounds of the stem were α-cadinol (14.5%), β-caryophyllene (10.3%) and octadecanoic acid (8.2%). Benzoic acid (18.4%), β-caryophyllene (12.4%) and α-pinene (10.3%) were present in the leaf of G. albiflorus, whereas limonene (21.2%), β-caryophyllene (12.8%) and α-phellandrene (9.3%) were identified in the stem. The leaf oil of G. tamirensis was characterised by abundance of α-pinene (33.4%), viridiflorol (18.5%) and β-caryophyllene (12.4%), whereas γ-gurjunene (11.2%), β-caryophyllene (10.9%) and δ-cadinene (10.3%) predominates in the stem oil.

    Topics: Acyclic Monoterpenes; Alkenes; Azulenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Chromatography, Gas; Cyclohexane Monoterpenes; Gas Chromatography-Mass Spectrometry; Goniothalamus; Monocyclic Sesquiterpenes; Monoterpenes; Oils, Volatile; Plant Bark; Plant Leaves; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes

2013
In vitro evaluation of schistosomicidal activity of essential oil of Mentha x villosa and some of its chemical constituents in adult worms of Schistosoma mansoni.
    Planta medica, 2013, Volume: 79, Issue:14

    This study aimed to determine the composition of the essential oil of Mentha x villosa and to evaluate its biological effects in vitro on adult worms of S. mansoni. Rotundifolone (70.96 %), limonene (8.75 %), trans-caryophyllene (1.46 %), and β-pinene (0.81 %) were shown to be the major constituents of this oil. Adult worms of S. mansoni were incubated with different concentrations of the essential oil (1, 10, 100, 250, 500, and 1000 µg/mL) and of its constituents rotundifolone (0.7, 3.54, 7.09, 70.96, 177.4, 354.8, and 700.96 µg/mL), limonene (43.75 µg/mL), trans-caryophyllene (7.3 µg/mL), and β-pinene (4.03 µg/mL). No schistosomicidal activity was identified at the trans-caryophyllene and β-pinene concentrations studied. However, use of the essential oil (10 µg/mL), rotundifolone (7.09 µg/mL), and limonene (43.75 µg/mL) resulted in decreased worm motility continuing until 96 hours of observation. At higher concentrations (100 and 70.96 µg/mL, respectively), both the essential oil and rotundifolone caused mortality among adult worms of S. mansoni. The positive control praziquantel caused the death of all parasites after 24 h of evaluation. The results from this study suggest that the essential oil of Mentha x villosa presents schistosomicidal efficacy.

    Topics: Animals; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexenes; Limonene; Mentha; Monoterpenes; Oils, Volatile; Plant Extracts; Polycyclic Sesquiterpenes; Schistosoma mansoni; Schistosomicides; Sesquiterpenes; Terpenes

2013
Isolation and characterization of terpene synthases in cotton (Gossypium hirsutum).
    Phytochemistry, 2013, Volume: 96

    Cotton plants accumulate gossypol and related sesquiterpene aldehydes, which function as phytoalexins against pathogens and feeding deterrents to herbivorous insects. However, to date little is known about the biosynthesis of volatile terpenes in this crop. Herein is reported that 5 monoterpenes and 11 sesquiterpenes from extracts of a glanded cotton cultivar, Gossypium hirsutum cv. CCRI12, were detected by gas chromatography-mass spectrometry (GC-MS). By EST data mining combined with Rapid Amplification of cDNA Ends (RACE), full-length cDNAs of three terpene synthases (TPSs), GhTPS1, GhTPS2 and GhTPS3 were isolated. By in vitro assays of the recombinant proteins, it was found that GhTPS1 and GhTPS2 are sesquiterpene synthases: the former converted farnesyl pyrophosphate (FPP) into β-caryophyllene and α-humulene in a ratio of 2:1, whereas the latter produced several sesquiterpenes with guaia-1(10),11-diene as the major product. By contrast, GhTPS3 is a monoterpene synthase, which produced α-pinene, β-pinene, β-phellandrene and trace amounts of other monoterpenes from geranyl pyrophosphate (GPP). The TPS activities were also supported by Virus Induced Gene Silencing (VIGS) in the cotton plant. GhTPS1 and GhTPS3 were highly expressed in the cotton plant overall, whereas GhTPS2 was expressed only in leaves. When stimulated by mechanical wounding, Verticillium dahliae (Vde) elicitor or methyl jasmonate (MeJA), production of terpenes and expression of the corresponding synthase genes were induced. These data demonstrate that the three genes account for the biosynthesis of volatile terpenes of cotton, at least of this Upland cotton.

    Topics: Acetates; Alkyl and Aryl Transferases; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; Cyclohexenes; Cyclopentanes; Gas Chromatography-Mass Spectrometry; Gossypium; Intramolecular Lyases; Monocyclic Sesquiterpenes; Monoterpenes; Oxylipins; Phytoalexins; Polycyclic Sesquiterpenes; Polyisoprenyl Phosphates; Sesquiterpenes; Sesquiterpenes, Guaiane; Terpenes; Volatile Organic Compounds

2013
Identification and characterization of (E)-β-caryophyllene synthase and α/β-pinene synthase potentially involved in constitutive and herbivore-induced terpene formation in cotton.
    Plant physiology and biochemistry : PPB, 2013, Volume: 73

    Cotton (Gossypium hirsutum L.) plants damaged by insects emit a blend of volatiles, including monoterpenes and sesquiterpenes, which can directly repel herbivores and/or indirectly protect the plant by attracting natural enemies of the herbivores. To understand the molecular basis of terpene biosynthesis and regulation in cotton, two terpene synthase genes, GhTPS1 and GhTPS2, were heterologously expressed and characterized. Recombinant GhTPS1 accepted farnesyl pyrophosphate as substrate and produced (E)-β-caryophyllene and α-humulene. GhTPS2 was characterized as a monoterpene synthase which formed α-pinene and β-pinene using geranyl pyrophosphate as substrate. Quantitative real-time PCR analysis revealed that GhTPS1 and GhTPS2 gene expression was elevated after methyl jasmonate (MeJA) treatment in cotton leaves. Moreover, feeding of the green plant bug Apolygus lucorum, a major cotton pest in northern China, resulted in increased GhTPS2 expression in young leaves, suggesting that GhTPS2 might be involved in plant defense in cotton.

    Topics: Acetates; Adaptation, Physiological; Alkyl and Aryl Transferases; Animals; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Carbon-Oxygen Lyases; China; Cyclopentanes; Gene Expression; Genes, Plant; Gossypium; Herbivory; Insecta; Monocyclic Sesquiterpenes; Monoterpenes; Oxylipins; Plant Diseases; Plant Leaves; Plant Proteins; Polycyclic Sesquiterpenes; Polyisoprenyl Phosphates; Sesquiterpenes; Terpenes

2013
Salvia x jamensis J. Compton: Trichomes, essential oil constituents and cytotoxic-apoptotic activity.
    Natural product research, 2013, Volume: 27, Issue:17

    Salvia x jamensis J. Compton is a hybrid between Salvia greggii A. Gray and Salvia microphylla Kunt. In this study, we describe three hair types identified by Scanning Electron Microscopy. In the essential oil of the aerial parts of S. jamensis 56 different compounds were identified. The two main constituents were β-caryophyllene (14.8%) and β-pinene (6.8%). Cytotoxic-apoptotic activity of S. x jamensis essential oil has been investigated by using U937 cell line. The essential oil EC50 for cell number and for cell apoptosis have been shown to be 360 and 320 µg mL(-1), respectively. Among the constituents of the oil examined, only β-caryophyllene, β-pinene and α-pinene displayed cytotoxic and apoptotic activities. For the first time, it has been demonstrated that some of the pure constituents identified within S. x jamensis essential oil are responsible for its cytotoxic-apoptotic activity when properly combined.

    Topics: Apoptosis; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cell Line, Tumor; Humans; Microscopy, Electron, Scanning; Monoterpenes; Oils, Volatile; Polycyclic Sesquiterpenes; Salvia; Sesquiterpenes; Trichomes

2013
Chemical compositions, antioxidant and antimicrobial activities of essential oils of Piper caninum Blume.
    International journal of molecular sciences, 2011, Volume: 12, Issue:11

    Chemical composition, antioxidant and antimicrobial activities of the fresh leaves and stems oils of Piper caninum were investigated. A total of forty eight constituents were identified in the leaves (77.9%) and stems (87.0%) oil which were characterized by high proportions of phenylpropanoid, safrole with 17.1% for leaves and 25.5% for stems oil. Antioxidant activities were evaluated by using β-carotene/linoleic acid bleaching, DPPH radical scavenging and total phenolic content. Stems oil showed the highest inhibitory activity towards lipid peroxidation (114.9 ± 0.9%), compared to BHT (95.5 ± 0.5%), while leaves oil showed significant total phenolic content (27.4 ± 0.5 mg GA/g) equivalent to gallic acid. However, the essential oils showed weak activity towards DPPH free-radical scavenging. Evaluation of antimicrobial activity revealed that both oils exhibited strong activity against all bacteria strains with MIC values in the range 62.5 to 250 μg/mL, but weak activity against fungal strains. These findings suggest that the essential oils can be used as antioxidant and antimicrobial agents for therapeutic, nutraceutical industries and food manufactures.

    Topics: Anti-Infective Agents; Antioxidants; beta Carotene; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Gas Chromatography-Mass Spectrometry; Linoleic Acid; Lipid Peroxidation; Microbial Sensitivity Tests; Monoterpenes; Oils, Volatile; Phenols; Piper; Plant Extracts; Plant Leaves; Plant Stems; Polycyclic Sesquiterpenes; Safrole; Sesquiterpenes; Sesquiterpenes, Germacrane

2011
Chemical composition and analgesic activity of Senecio rufinervis essential oil.
    Pharmaceutical biology, 2010, Volume: 48, Issue:11

    Senecio rufinervis D.C (Asteraceae) is a tall aromatic herb, commonly found in Uttarakhand, India. No investigations on the biological activity of this plant have been published so far. Hence, this plant species became a subject of our scientific interest.. The aim of the study was to investigate the chemical composition and analgesic activity of Senecio rufinervis essential oil in mice using both thermal and chemical models of pain.. Essential oil from dried leaves of Senecio rufinervis was extracted by steam distillation and then subjected to GC-MS analysis. Varying doses of essential oil were given to mice, 30 min prior to the induction of abdominal constrictions and determination of mean reaction time in hot-plate maintained at 55° ± 0.5°C.. The main component detected in the essential oil of Senecio rufinervis was germacrene D (40.19%) followed by β-pinene (12.23%), β-caryophyllene (6.21%) and β-longipinene (4.15%). Essential oil exhibited significant and dose-dependent analgesic activity against acetic acid-induced writhing in mice. The percentage inhibition in number of writhes produced by 25, 50 and 75 mg/kg doses was, respectively, 69, 80 and 85%. The oil, at doses 50 and 75 mg/kg, significantly increased the mean latency in the hot-plate after 15 and 30 min of drug administration as compared to the control group.. The results depicted both central and peripheral analgesic activity of S. rufinervis essential oil which was attributed to the presence of terpenes.

    Topics: Abdominal Pain; Analgesics; Animals; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Dose-Response Relationship, Drug; Gas Chromatography-Mass Spectrometry; Hot Temperature; Hyperalgesia; India; Male; Mice; Mice, Inbred Strains; Monoterpenes; Oils, Volatile; Pain; Pain Measurement; Phytotherapy; Plant Leaves; Plant Oils; Polycyclic Sesquiterpenes; Rotarod Performance Test; Senecio; Sesquiterpenes; Sesquiterpenes, Germacrane

2010
Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol.
    Environmental science & technology, 2009, Jul-01, Volume: 43, Issue:13

    Secondary organic aerosol (SOA) consists of compounds with a wide range of volatilities and its ambient concentration is sensitive to this volatility distribution. Recent field studies have shown that the typical mass spectrum of ambient oxygenated organic aerosol (OOA) as measured by the Aerodyne Aerosol Mass Spectrometer (AMS) is quite different from the SOA mass spectra reported in smog chamber experiments. Part of this discrepancy is due to the dependence of SOA composition on the organic aerosol concentration. High precursor concentrations lead to higher concentrations of the more volatile species in the produced SOA while at lower concentrations the less volatile compounds dominate the SOA composition. alpha-Pinene, beta-pinene, d-limonene, and beta-caryophyllene ozonolysis experiments were performed at moderate concentration levels. Using a thermodenuder the more volatile SOA species were removed achieving even lower SOA concentration. The less volatile fraction was then chemically characterized by an AMS. The signal fraction of m/z44, and thus the concentration of C02+, is significantly higher for the less volatile SOA. High NO(x) conditions result in less oxidized SOA than low NO(x) conditions, while increasing relative humidity levels results in more oxidized products for limonene but has little effect on alpha-and beta-pinene SOA. Combining a smog chamber with a thermodenuder model employing the volatility basis-set framework, the AMS SOA mass spectrum for each experiment and for each precursor is deconvoluted into low, medium, and high volatility component mass spectra. The spectrum of the surrogate component with the lower volatility is quite similar to that of ambient OOA.

    Topics: Aerosols; Air Pollutants; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Environmental Monitoring; Mass Spectrometry; Monoterpenes; Organic Chemicals; Oxygen; Ozone; Polycyclic Sesquiterpenes; Sesquiterpenes; Smog; Temperature; Terpenes

2009
Variability of the needle essential oils of Pinus heldreichii from different populations in Montenegro and Serbia.
    Chemistry & biodiversity, 2007, Volume: 4, Issue:5

    The essential-oil compositions of Pinus heldreichii Christ. from Montenegro and Serbia are reported at the population level. Whitebark pine is a sub-endemic high-mountain Balkan pine relict of an anthropogenically reduced area, with large morphological diversity and insufficiently clear taxonomic position. In the pine-needle terpene profile from three populations from Montenegro, and one from Serbia, 101 compounds were detected, 72 of which could be identified (Table 3). The dominant constituents are limonene (26.3%), alpha-pinene (17.5%), germacrene D (13.5%), and beta-caryophyllene (10.4%), comprising ca. 67.7% of the essential oil. Medium-to-high contents (0.5-10%) of the following 16 additional components were found: beta-pinene, beta-myrcene, alpha-humulene, delta-cadinene, alpha-muurolene, (E)-hex-2-enal, beta-gurjunene, gamma-muurolene, isopimarol, camphene, gamma-cadinene, aromadendrene, beta-bisabolene, trans-beta-farnesene, alpha-cadinene, and (Z)-hex-3-en-1-ol. The similarity of the populations and the within-population variability was visualized by principle-component analysis (PCA) of eleven selected terpenes in 97 tree samples. Cluster and genetic analyses suggest closest connection between the two spatially most-distant populations I (Montenegro) and IV (Serbia). Based on the profile of the main sesquiterpene components, the studied populations from Montenegro and Serbia are more similar to the populations from Greece and the Central Balkan peninsula (Bosnia and Serbia-Kosovo) than to those on the furthest eastern margin of their natural range (Bulgaria).

    Topics: Acyclic Monoterpenes; Azulenes; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexenes; Limonene; Monoterpenes; Oils, Volatile; Pinus; Polycyclic Sesquiterpenes; Sesquiterpenes; Terpenes; Yugoslavia

2007
Essential oil composition of aerial parts of Angelica glauca growing wild in North-West Himalaya (India).
    Phytochemistry, 2004, Volume: 65, Issue:16

    Fresh aerial parts of Angelica glauca, growing wild in Kashmir valley in higher Himalaya (Jammu and Kashmir, India), collected at flowering stage from different locations, on hydro-distillation provided a refreshing light pale coloured essential oil with characteristic floral woody flavour. The oil was found to be a complex mixture of mono- and sesquiterpenes and 34 compounds accounting for nearly 97.4% of the oil were characterized with the help of capillary GC, GC-MS, and NMR. Major compounds of the oil were characterized as alpha-phellandrene (13.5%), trans-carveol (12.0%), beta-pinene (11.7%), thujene (7.5%), beta-caryophyllene oxide (7.2%), beta-caryophyllene (7.0%), gamma-terpinene (6.7%), nerolidol (6.5%), beta-bisabolene (5.2%) and germacrene D (4.5%). It is the first report to exploit the essential oil from Himalayan A. glauca herb collected at flowering stage.

    Topics: Angelica; Bicyclic Monoterpenes; Bridged Bicyclo Compounds; Cyclohexane Monoterpenes; India; Monoterpenes; Oils, Volatile; Plant Components, Aerial; Plant Oils; Polycyclic Sesquiterpenes; Sesquiterpenes; Sesquiterpenes, Germacrane

2004