caryophyllene and artemisinin

caryophyllene has been researched along with artemisinin* in 2 studies

Other Studies

2 other study(ies) available for caryophyllene and artemisinin

ArticleYear
Chemotype-dependent metabolic response to methyl jasmonate elicitation in Artemisia annua.
    Planta medica, 2011, Volume: 77, Issue:10

    Considerable difference in artemisinin and its direct precursors, artemisinic acid and dihydroartemisinic acid, was detected between two chemotypes within the species Artemisia annua (A. annua). These two chemotypes showed differential metabolic response to methyl jasmonate (MeJA) elicitation. Exogenous application of MeJA resulted in an accumulation of dihydroartemisinic acid and artemisinin in Type I plants. In Type II plants, however, artemisinic acid and artemisinin level decreased dramatically under MeJA elicitation. Squalene and other sesquiterpenes, (e.g., caryophyllene, germacrene D), were stimulated by MeJA in both chemotypes. The effect of MeJA elicitation was also studied at the transcription level. Real time RT-PCR analysis showed a coordinated activation of most artemisinin pathway genes by MeJA in Type I plants. The lack of change in cytochrome P450 reductase (CPR) transcript in Type I plants indicates that the rate-limiting enzymes in artemisinin biosynthesis have yet to be identified. Other chemotype-specific electron donor proteins likely exist in A. annua to meet the demand for P450-mediated reactions in MeJA-mediated cellular processes. In Type II plants, mRNA expression patterns of most pathway genes were consistent with the reduced artemisinin level. Intriguingly, the mRNA transcript of aldehyde dehydrogenase1 (ADHL1), an enzyme which catalyzes the oxidation of artemisinic and dihydroartemisinic aldehydes, was upregulated by MeJA. The differential metabolic response to MeJA suggests a chemotype-dependent metabolic flux control towards artemisinin and sterol production in the species A. annua.

    Topics: Acetates; Aldehyde Dehydrogenase 1 Family; Alkyl and Aryl Transferases; Artemisia annua; Artemisinins; Cyclopentanes; Cytochrome P-450 Enzyme System; Gas Chromatography-Mass Spectrometry; Gene Expression Regulation, Plant; Isoenzymes; NADPH-Ferrihemoprotein Reductase; Oxidoreductases; Oxylipins; Plant Growth Regulators; Plant Leaves; Plant Proteins; Polycyclic Sesquiterpenes; Retinal Dehydrogenase; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Sesquiterpenes; Sesquiterpenes, Germacrane; Squalene; Terpenes

2011
Artemisinin biosynthesis enhancement in transgenic Artemisia annua plants by downregulation of the β-caryophyllene synthase gene.
    Planta medica, 2011, Volume: 77, Issue:15

    Artemisinin is an effective antimalarial drug isolated from the medicinal plant Artemisia annua L. Due to its increasing market demand and the low yield in A. annua, there is a great interest in increasing its production. In this paper, in an attempt to increase artemisinin content of A. ANNUA by suppressing the expression of β-caryophyllene synthase, a sesquiterpene synthase competing as a precursor of artemisinin, the antisense fragment (750 bp) of β-caryophyllene synthase cDNA was inserted into the plant expression vector pBI121 and introduced into A. annua by Agrobacterium-mediated transformation. PCR and Southern hybridization confirmed the stable integration of multiple copies of the transgene in 5 different transgenic lines of A. annua. Reverse transcription PCR showed that the expression of endogenous CPS in the transgenic lines was significantly lower than that in the wild-type control A. annua plants, and β-caryophyllene content decreased sharply in the transgenic lines in comparison to the control. The artemisinin content of one of the transgenic lines showed an increase of 54.9 % compared with the wild-type control. The present study demonstrated that the inhibition pathway in the precursor competition for artemisinin biosynthesis by anti-sense technology is an effective means of increasing the artemisinin content of A. annua plants.

    Topics: Anti-Infective Agents; Anti-Inflammatory Agents, Non-Steroidal; Artemisia annua; Artemisinins; DNA, Antisense; DNA, Complementary; DNA, Plant; Down-Regulation; Drugs, Chinese Herbal; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Ligases; Medicine, Chinese Traditional; Plant Leaves; Plant Proteins; Plant Shoots; Plants, Genetically Modified; Plants, Medicinal; Plasmids; Polycyclic Sesquiterpenes; RNA, Messenger; RNA, Plant; Seedlings; Sesquiterpenes

2011