cardiovascular-agents has been researched along with procyanidin* in 3 studies
3 other study(ies) available for cardiovascular-agents and procyanidin
Article | Year |
---|---|
Regression of atherosclerosis with apple procyanidins by activating the ATP-binding cassette subfamily A member 1 in a rabbit model.
Apple polyphenol contains abundant procyanidins, which have been associated with an anti-atherosclerosis and cholesterol-lowering effect. The aim of this study was to investigate whether apple procyanidins (APCs) feature therapeutic efficacy in terms of regressing atherosclerosis and whether this efficacy is due to mechanisms other than a cholesterol-lowering effect.. After eight weeks on an atherogenic diet, rabbits were given a normal diet for another eight weeks to normalize the increased serum lipids level. The rabbits in the baseline group were sacrificed at this stage. The control group was subsequently fed a normal diet for eight weeks, while the APCs group was administrated 50 mg/kg/day of APCs in addition to the normal diet. Serum lipids and aortic intimal-medial thickness (IMT) were serially examined, and the resected aorta was examined histologically and through molecular biology.. Aortic IMT on ultrasonography and the lipid accumulation area examined using Sudan IV staining were significantly reduced in the APCs group as compared to the control group. Serum lipid profiles were not different between the groups. Immunohistochemistry showed significantly decreased staining of an oxidative stress marker and significantly increased staining of ATP-binding cassette subfamily A member 1 (ABCA1) in the APCs group. Western blotting and RT-PCR also showed increased expression of ABCA1 mRNA and its protein in the APCs group.. This study revealed that APCs administration causes a regression of atherosclerosis. APCs might hold promise as an anti-atherosclerotic agent. Topics: Animals; Aorta; Aortic Diseases; Atherosclerosis; ATP Binding Cassette Transporter 1; Biflavonoids; Cardiovascular Agents; Catechin; Cholesterol; Disease Models, Animal; Fruit; Lipoproteins, LDL; Male; Malus; Oxidative Stress; Phytotherapy; Plants, Medicinal; Plaque, Atherosclerotic; Proanthocyanidins; Reactive Oxygen Species; RNA, Messenger; Scavenger Receptors, Class E; Time Factors; Up-Regulation | 2017 |
Procyanidines from Vitis vinifera seeds protect rabbit heart from ischemia/reperfusion injury: antioxidant intervention and/or iron and copper sequestering ability.
An isolated rabbit heart Langendorff preparation paced electrically was used to evaluate the effects of a highly purified, high molecular weight fraction of oligomeric procyanidines isolated from Vitis vinifera seeds on myocardial reperfusion injury after 40 minutes of low flow (1 ml/min) ischemia. Infusion of the heart with 100 or 200 micrograms/ml procyanidines dose-dependently reduced ventricular contracture during ischemia (LVEDP values decreased by 28% and 51%), decreased coronary perfusion pressure (CPP), improved cardiac mechanical performance upon reperfusion, increased the release of 6-keto-PGF1 alpha into the perfusate in both the pre-ischemic and the reperfusion periods (by 68% at 200 micrograms/ml), and suppressed rhythm irregularity. This antiarrhythmogenic action was confirmed in a more severe model of ischemia (flow rate 0.2 ml/ min). The cardioprotective agent allopurinol infused at 20 micrograms/ml had effects on the contractility and on the release of 6-keto-PGF1 alpha comparable to those of 200 micrograms/ml procyanidines. The results of the second part of this study show that procyanidines are potent scavengers of several reactive oxygen species involved in the ischemia/reperfusion damage: the superoxide anion (IC50 = 5.64 microM: rate constant K = 7.55 x 10(5) M-1 s-1, determined by the phenazine methosulfate/NADH method); the hydroxyl radical (IC50 = 28 microM; rate constant K = 1.2 x 10(12) M-1 s-1, determined by the electron spin resonance spectroscopy); peroxyl radicals (IC50 = 0.025 microM and 0.35 microM, determined using two different lipid substrates, phosphatidylcholine liposomes and methyl linoleate micelles by UV spectroscopy at 233 nm). Finally, procyanidines interact with Fe2+ and Cu2+ ions (the catalysts of HO. radicals production) giving rise to strong complexes, with stability constants (log K) ranging from 9.35 to approximately 9. Topics: Animals; Antioxidants; Biflavonoids; Cardiovascular Agents; Catechin; Copper; Epoprostenol; Free Radical Scavengers; Fruit; Heart; Iron; Male; Myocardial Reperfusion Injury; Proanthocyanidins; Rabbits; Seeds | 1996 |
Procyanidins from the roots of Fragaria vesca: characterization and pharmacological approach.
Topics: Animals; Biflavonoids; Cardiovascular Agents; Catechin; Chromatography, High Pressure Liquid; Male; Plants, Medicinal; Proanthocyanidins; Rats; Rats, Inbred Strains | 1988 |