cardiovascular-agents has been researched along with arginyl-glycyl-aspartic-acid* in 3 studies
3 other study(ies) available for cardiovascular-agents and arginyl-glycyl-aspartic-acid
Article | Year |
---|---|
Imaging the Proangiogenic Effects of Cardiovascular Drugs in a Diabetic Model of Limb Ischemia.
Peripheral artery disease (PAD) causes narrowing of arteries in the limbs, leading to tissue ischemia, gangrene, and eventually limb amputation. The presence of diabetes greatly exacerbates the course of PAD, accounting for the majority of lower limb amputations. Therapeutic strategies focussing on macrovascular repair are less effective in diabetic patients where smaller vessels are affected, and proangiogenic therapies offer a viable adjunct to improve vascularisation in these at risk individuals. The purpose of the current study was to assess the proangiogenic effects of drugs routinely used to treat cardiovascular disease in a diabetic murine model of hind limb ischemia longitudinally using multimodal imaging.. Diabetic mice underwent surgical intervention to induce hind limb ischemia and were treated with simvastatin, metformin, or a combination orally for 28 days and compared to diabetic and nondiabetic mice. Neovascularisation was assessed using [. Combined use of simvastatin and metformin significantly increased neovascularisation above levels measured with either treatment alone. Early angiogenic events were accurately assessed using PET [. Combined treatment with simvastatin and metformin led to a significant improvement in limb angiogenesis, vascular volume, and sustained functional recovery in a diabetic murine model of HLI. PET imaging with [ Topics: Animals; Cardiovascular Agents; Diabetes Mellitus, Experimental; Hindlimb; Immunohistochemistry; Ischemia; Magnetic Resonance Imaging; Male; Metformin; Mice; Mice, Inbred BALB C; Muscle, Skeletal; Oligopeptides; Simvastatin | 2019 |
Molecular imaging for efficacy of pharmacologic intervention in myocardial remodeling.
Using molecular imaging techniques, we examined interstitial alterations during postmyocardial infarction (MI) remodeling and assessed the efficacy of antiangiotensin and antimineralocorticoid intervention, alone and in combination.. The antagonists of the renin-angiotensin-aldosterone axis restrict myocardial fibrosis and cardiac remodeling after MI and contribute to improved survival. Radionuclide imaging with technetium-99m-labeled Cy5.5 RGD imaging peptide (CRIP) targets myofibroblasts and indirectly allows monitoring of the extent of collagen deposition post-MI.. CRIP was intravenously administered for gamma imaging after 4 weeks of MI in 63 Swiss-Webster mice and in 6 unmanipulated mice. Of 63 animals, 50 were treated with captopril (C), losartan (L), spironolactone (S) alone, or in combination (CL, SC, SL, and SCL), 8 mice received no treatment. Echocardiography was performed for assessment of cardiac remodeling. Hearts were characterized histopathologically for the presence of myofibroblasts and thick and thin collagen fiber deposition.. Acute MI size was similar in all groups. The quantitative CRIP percent injected dose per gram uptake was greatest in the infarct area of untreated control mice (2.30 +/- 0.14%) and decreased significantly in animals treated with 1 agent (C, L, or S; 1.71 +/- 0.35%; p = 0.0002). The addition of 2 (CL, SC, or SL 1.31 +/- 0.40%; p < 0.0001) or 3 agents (SCL; 1.16 +/- 0.26%; p < 0.0001) demonstrated further reduction in tracer uptake. The decrease in echocardiographic left ventricular function, strain and rotation parameters, as well as histologically verified deposition of thin collagen fibers, was significantly reduced in treatment groups and correlated with CRIP uptake.. Radiolabeled CRIP allows for the evaluation of the efficacy of neurohumoral antagonists after MI and reconfirms superiority of combination therapy. If proven clinically, molecular imaging of the myocardial healing process may help plan an optimal treatment for patients susceptible to heart failure. Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Captopril; Carbocyanines; Cardiovascular Agents; Disease Models, Animal; Drug Therapy, Combination; Echocardiography; Fibrillar Collagens; Fibroblasts; Fibrosis; Losartan; Mice; Mineralocorticoid Receptor Antagonists; Myocardial Infarction; Myocardium; Oligopeptides; Predictive Value of Tests; Spironolactone; Technetium; Tomography, Emission-Computed, Single-Photon; Ventricular Function, Left; Ventricular Remodeling | 2009 |
Molecular imaging and the failing heart: through the looking glass.
Topics: Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Carbocyanines; Cardiovascular Agents; Drug Therapy, Combination; Echocardiography; Fibrillar Collagens; Fibroblasts; Fibrosis; Heart Failure; Humans; Mineralocorticoid Receptor Antagonists; Myocardial Infarction; Myocardium; Oligopeptides; Predictive Value of Tests; Technetium; Tomography, Emission-Computed, Single-Photon; Ventricular Function, Left; Ventricular Remodeling | 2009 |