carbonyl cyanide p-trifluoromethoxyphenylhydrazone has been researched along with arsenic trioxide in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Geng, X; Liu, L; Liu, Z; Lundgren, J; McDermott, J; Shen, J; Tsai, KJ | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
3 other study(ies) available for carbonyl cyanide p-trifluoromethoxyphenylhydrazone and arsenic trioxide
Article | Year |
---|---|
Role of AQP9 in transport of monomethyselenic acid and selenite.
Topics: Animals; Aquaporins; Arsenic Trioxide; Arsenicals; Biological Transport; Cacodylic Acid; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Gene Expression; Humans; Hydrogen-Ion Concentration; Kinetics; Lactic Acid; Nigericin; Oocytes; Organometallic Compounds; Organoselenium Compounds; Oxides; Phloretin; Selenious Acid; Substrate Specificity; Transgenes; Valinomycin; Xenopus laevis | 2017 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |