carbocyanines has been researched along with fluorexon* in 12 studies
1 review(s) available for carbocyanines and fluorexon
Article | Year |
---|---|
Flow cytometry analysis of gap junction-mediated cell-cell communication: advantages and pitfalls.
Since the first morphological description of the gap junctions use electron microscopy, a considerable number of techniques has been introduced to evaluate gap junction channel functionality, many of which use dye transfer techniques, such as dye injection and fluorescent dye transfer, analyzed by flow cytometry.. To analyze dye transfer, generally one population of cells is incubated with calcein-AM (0.5 microM) for 30 min at 37 degrees C, and the other population was incubated with the lipophilic dye DiIC(18) (3) (10 microM) for 1 h at 37 degrees C; after incubation, these cells were washed five times with PBS and cocultured for different times, and then the dye transfer was analyzed by flow cytometry.. In this short overview, we focus on some advantages and disadvantages of flow cytometry as a technique to investigate gap junction-mediated intercellular communication (GJIC). In addition, we point out some technical pitfalls that we have encountered when applying this technique to study gap junctions in immune system cells.. Analysis of fluorescent dye transfer by flow cytometry is a useful tool to investigate GJIC. However, some points must be taken into consideration before using this methodology, which are discussed herein. Topics: Animals; Carbocyanines; Cell Communication; Cells, Cultured; Flow Cytometry; Fluoresceins; Fluorescent Dyes; Gap Junctions; Humans; Intercellular Junctions; Models, Biological | 2006 |
11 other study(ies) available for carbocyanines and fluorexon
Article | Year |
---|---|
Fungicidal mechanisms of the antimicrobial peptide Bac8c.
Bac8c (RIWVIWRR-NH2) is an analogue peptide derived through complete substitution analysis of the linear bovine host defense peptide variant Bac2A. In the present study, the antifungal mechanism of Bac8c against pathogenic fungi was investigated, with a particular focus on the effects of Bac8c on the cytoplasmic membrane. We used bis-(1,3-dibutylbarbituric acid) trimethine oxonol [DiBAC4(3)] staining and 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] assays to show that Bac8c induced disturbances in the membrane potential of Candida albicans. An increase in membrane permeability and suppression of cell wall regeneration were also observed in Bac8c-treated C. albicans. We studied the effects of Bac8c treatment on model membranes to elucidate its antifungal mechanism. Using calcein and FITC-labeled dextran leakage assays from Bac8c-treated large unilamellar vesicles (LUVs) and giant unilamellar vesicles (GUVs), we found that Bac8c has a pore-forming action on fungal membranes, with an estimated pore radius of between 2.3 and 3.3 nm. A membrane-targeted mechanism of action was also supported by the observation of potassium release from the cytosol of Bac8c-treated C. albicans. These results indicate that Bac8c is considered as a potential candidate to develop a novel antimicrobial agent because of its low-cost production characteristics and high antimicrobial activity via its ability to induce membrane perturbations in fungi. Topics: Animals; Antifungal Agents; Antimicrobial Cationic Peptides; Barbiturates; Benzothiazoles; Biological Transport; Candida albicans; Carbocyanines; Cattle; Cell Membrane; Cell Membrane Permeability; Cell Wall; Dextrans; Fluorescein-5-isothiocyanate; Fluoresceins; Fluorescent Dyes; Isoxazoles; Membrane Potentials; Microbial Sensitivity Tests; Potassium; Spectrometry, Fluorescence; Unilamellar Liposomes | 2015 |
Fungicidal effect of isoquercitrin via inducing membrane disturbance.
Isoquercitrin is a flavonoid isolated from Aster yomena, which has been used as a traditional medicinal herb. In the present study, we investigated the antifungal activity and the underlying mechanism of isoquercitrin. Isoquercitrin had a potent effect in the susceptibility test against pathogenic fungi and almost no hemolysis. Propidium iodide and potassium release assays were conducted in Candida albicans, and these studies confirmed that isoquercitrin induced membrane damage, thereby, increasing permeability. Membrane potential was analyzed using 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)], and the transition of membrane potential was indicated by an increased fluorescence intensity. To further analyze these results using model membranes, giant unilamellar vesicles and large unilamellar vesicles that encapsulated calcein were prepared and the detection of calcein leakage from liposomes indicated that membrane was disturbed. We further verified membrane disturbance by observing the disordered status of the lipid bilayer with 1,6-diphenyl-1,3,5-hexatriene fluorescence. Moreover, changes in size and granularity of the cell were revealed in flow cytometric analysis. All these results suggested the membrane disturbance and the degree of disturbance was estimated to be within a range of 2.3 nm to 3.3 nm by fluorescein isothiocyanate-dextran analysis. Taken together, isoquercitrin exerts its fungicidal effect by disturbing the membrane of cells. Topics: Antifungal Agents; Aster Plant; Benzothiazoles; Candida albicans; Carbocyanines; Cell Membrane; Cell Membrane Permeability; Dextrans; Diphenylhexatriene; Flow Cytometry; Fluorescein-5-isothiocyanate; Fluoresceins; Fluorescent Dyes; Membrane Potentials; Microbial Sensitivity Tests; Plants, Medicinal; Quercetin; Republic of Korea; Unilamellar Liposomes | 2015 |
Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism.
Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane. Topics: Amino Acid Motifs; Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Arthropod Proteins; Arthropods; Barbiturates; Benzothiazoles; Candida albicans; Carbocyanines; Cell Membrane; Dextrans; Erythrocytes; Escherichia coli O157; Fluorescein-5-isothiocyanate; Fluoresceins; Fluorescent Dyes; Humans; Isoxazoles; Microbial Sensitivity Tests; Molecular Sequence Data; Spectrometry, Fluorescence; Unilamellar Liposomes | 2015 |
Antifungal property of hibicuslide C and its membrane-active mechanism in Candida albicans.
In this study, the antifungal activity and mode of action(s) of hibicuslide C derived from Abutilon theophrasti were investigated. Antifungal susceptibility testing showed that hibicuslide C possessed potent activities toward various fungal strains and less hemolytic activity than amphotericin B. To understand the antifungal mechanism(s) of hibicuslide C in Candida albicans, flow cytometric analysis with propidium iodide was done. The results showed that hibicuslide C perturbed the plasma membrane of the C. albicans. The analysis of the transmembrane electrical potential with 3,3'-dipropylthiacarbocyanine iodide [DiSC3(5)] indicated that hibicuslide C induced membrane depolarization. Furthermore, model membrane studies were performed with calcein encapsulating large unilamellar vesicles (LUVs) and FITC-dextran (FD) loaded LUVs. These results demonstrated that the antifungal effects of hibicuslide C on the fungal plasma membrane were through the formation of pores with radii between 2.3 nm and 3.3 nm. Finally, in three dimensional flow cytometric contour plots, a reduced cell sizes by the pore-forming action of hibicuslide C were observed. Therefore, the present study suggests that hibicuslide C exerts its antifungal effect by membrane-active mechanism. Topics: Amphotericin B; Antifungal Agents; Benzothiazoles; Candida albicans; Carbocyanines; Cell Membrane; Cell Membrane Permeability; Dextrans; Erythrocytes; Flow Cytometry; Fluorescein-5-isothiocyanate; Fluoresceins; Fluorescent Dyes; Hemolysis; Humans; Malvaceae; Membrane Potentials; Phenylpropionates; Plant Extracts; Unilamellar Liposomes | 2013 |
Liposomes incorporating sodium deoxycholate for hexamethylmelamine (HMM) oral delivery: development, characterization, and in vivo evaluation.
Liposomes incorporating sodium deoxycholate (NaDC) were prepared by the method of reverse phase evaporation and used for drug delivery by the oral route. Hexamethylmelamine (HMM), an anti-tumor agent, was chosen as a model drug and encapsulated into liposomes incorporating NaDC (NaDC-Lip). Several properties of NaDC-Lip containing HMM (HMM NaDC-Lip), such as particle size, entrapment efficiency, pinacyanol chloride (PIN) spectral characteristics with various molar ratio of NaDC/PC, as well as the vesicle stability measurements with calcein were evaluated. In vivo, the area under the plasma concentration-time curve obtained from the pharmacokinetics study of HMM NaDC-Lip was found to be approximately 9.76- and 1.21-fold higher than that of HMM solution and HMM Lip, respectively, indicating that NaDC-Lip can be used as a potential carrier for oral drug administration. Topics: Administration, Oral; Altretamine; Animals; Antineoplastic Agents, Alkylating; Carbocyanines; Cholesterol; Chromatography, High Pressure Liquid; Deoxycholic Acid; Drug Carriers; Drug Compounding; Drug Stability; Female; Fluoresceins; Lipids; Liposomes; Particle Size; Rats; Rats, Wistar; Spectrophotometry, Ultraviolet | 2010 |
Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content. Topics: Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Anura; Benzothiazoles; Carbocyanines; Cell Membrane; Cell Membrane Permeability; Dimyristoylphosphatidylcholine; Fluoresceins; Gramicidin; Lipid Bilayers; Membrane Potentials; Phosphatidylcholines; Phosphatidylglycerols; Protein Structure, Secondary; Staphylococcus aureus | 2009 |
Identification of interspecies difference in efflux transporters of hepatocytes from dog, rat, monkey and human.
The large interspecies differences of hepatobiliary transport present a challenge for the allometric prediction of human biliary excretion for drug candidates primarily cleared via hepatobiliary secretion. In the present study, we determined the metabolic stabilities of common fluorescent substrates of hepatobiliary efflux transporters and developed a rapid efflux assay to determine the functional activities of MRP/Mrp, BCRP/Bcrp and P-gp in hepatocytes of four species. The specificities of transporter-mediated dye efflux were confirmed by selective transporter inhibitors. Among tested species, transporter-specific dye efflux kinetics was consistent between freshly isolated and cryopreserved hepatocytes. Hepatocyte elimination half-lives of MRP/Mrp substrates GS-MF and calcein were observed in the rank order of human>monkey>dog>rat. The fourfold higher MRP/Mrp substrate efflux rate of rat hepatocytes compared to human is likely due to the species-specific functional differences of MRP2/Mrp2 expressed on the canalicular membrane. We also observed efficient BCRP-mediated pheophorbide A (PhA) efflux by human and dog hepatocytes, while PhA extrusion in monkey and rat hepatocytes appeared limited. P-gp function measured by DiOC2(3) efflux was minimal in hepatocytes of all origins and no significant species differences were detected. Our results demonstrated marked differences in hepatocyte MRP/Mrp and BCRP/Bcrp activities across species, indicating that they may contribute to the species differences of in vivo hepatobiliary excretion. These results also suggest the potential utility of primary hepatocytes, either fresh or cryopreserved, as an in vitro model to predict interspecies differences in the biliary transport of MRP/Mrp and BCRP/Bcrp substrates. Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 1; Bile; Carbocyanines; Carrier Proteins; Cell Separation; Cryopreservation; Dogs; Female; Fluoresceins; Fluorescent Dyes; Half-Life; Hepatocytes; Humans; In Vitro Techniques; Macaca fascicularis; Male; Microsomes, Liver; Rats; Rats, Sprague-Dawley; Species Specificity | 2008 |
[Study of interaction between the phase states of liposome and dyes by UV-visible absorption spectra].
Liposome is one of the major areas of interest in recent years because of its many potential applications. In this paper, three phase states of liposome (micelle, lamellar and reversed hexagonal) were prepared by thin-film hydration method and their structures were observed with electron microscope. We studied the interaction between these phase states and various dyes by UV-visible spectra. As a result, the phase states of liposome can be detected by the color change or the spectroscopic change. Through careful selection, 4 kinds of useful dyes were found to detect different liposome structures, that is 2,6-dichloroindophenol sodium, congred, pinacyanol chloride and calcein. The possible mechanism of the interaction between the phases of liposome and dyes was discussed. The liposome undertakes hydrolysis and forms mixed micelle. The hydrolysis rate of lamellar is faster than that of reversed hexagonal, which makes pH of the solution to decrease and causes a color change of the dyes in a short time. This method can be applied to the separation of natural phosphatides and monitor in the production of liposome. Topics: 2,6-Dichloroindophenol; Absorption; Carbocyanines; Coloring Agents; Drug Interactions; Fluoresceins; Liposomes; Phase Transition; Spectrophotometry, Ultraviolet | 2002 |
Mitochondrial permeability transition and swelling can occur reversibly without inducing cell death in intact human cells.
Severe disruption of mitochondrial function is generally considered to provide a powerful trigger for apoptosis in mammalian cells. We report here that intact cells may undergo the mitochondrial permeability transition and mitochondria swell in a fully reversible manner, without inducing cell death. Cultured human osteosarcoma cells (143B TK-) stained with JC-1, MitoTracker dyes, or calcein plus Co2+ were imaged by confocal microscopy to visualize changes of mitochondrial membrane potential (DeltaPsim), morphology, and permeability transition, respectively, during treatment with a protonophore, carbonyl cyanide m-chlorophenylhydrazone (CCCP). Cells rapidly exhibited mitochondrial permeability transition and swelling after addition of CCCP, but the swelling subsided within hours, leaving mitochondria that appeared in punctate form, not filamentous as before CCCP treatment. Cyclosporin A impeded the permeability transition and swelling, although complete inhibition was not observed. Cells survived the dissipation of DeltaPsim by CCCP for up to 6 h without developing any obvious cell damage or signs of apoptosis. With the restoration of DeltaPsim after removal of CCCP (following 6 h of CCCP treatment), permeability transition pores were closed. These results suggest that none of the following events represent a point of no return in the process of apoptotic cell death: loss of DeltaPsim, mitochondrial permeability transition, or mitochondrial swelling. Topics: Aldehydes; Apoptosis; Benzimidazoles; Carbocyanines; Carbonyl Cyanide m-Chlorophenyl Hydrazone; Cell Survival; Cyclosporine; Fluoresceins; Fluorescent Dyes; Humans; Intracellular Membranes; Ionophores; Membrane Potentials; Microscopy, Confocal; Mitochondria; Mitochondrial Swelling; Organic Chemicals; Osteosarcoma; Permeability; Staining and Labeling; Tumor Cells, Cultured | 1999 |
Simultaneous measurement of liposome extravasation and content release in tumors.
The success of liposome-based drug delivery systems for tumor targeting relies on maximum extravasation of liposomes into tumor interstitium, as well as optimal release of contents from the liposomes once within the tumor Liposome extravasation and content release are two separate processes that can be individually or jointly manipulated so a method is needed to monitor these two processes independently and simultaneously. In this report, we describe a method to measure liposome extravasation and content release in tumor tissues growing in a rat skinfold window chamber preparation.. Mixtures of liposomes containing either doxorubicin or calcein, both of which are fluorescent, and liposomes surface-labeled with rhodamine were injected intravenously. Fluorescent, light intensities in a tumor region in two fluorescent channels were measured using an image-processing system. Light intensities of plasma from blood samples were also measured using this system. These measurements were used to calculate the amounts of liposomes and released contents in both plasma and tumor interstitium. The calculations were based on the fact that the liposome surface labels and contents emit fluorescent light at different wavelengths and when encapsulated, the contents fluorescence is self-quenched. The model included equations to account for fluorescent light "cross-contamination" by the two fluorochromes as well as equations relating the measured fluorescent light intensities to the amounts of liposomes and released contents. This method was applied to three situations in which liposome extravasation and content release were manipulated in different, predictable ways.. Our results indicate that this method can perform simultaneous independent and quantitative measurements of liposome extravasation and content release. This method can potentially be used to study drug delivery of other carrier systems in vivo. Topics: Animals; Antibiotics, Antineoplastic; Bradykinin; Carbocyanines; Doxorubicin; Drug Carriers; Erythrocytes; Extravasation of Diagnostic and Therapeutic Materials; Fluoresceins; Fluorescence; Fluorescent Dyes; Hematocrit; Hot Temperature; Liposomes; Mammary Neoplasms, Experimental; Microcirculation; Rats; Rhodamines; Temperature | 1997 |
A pre-loading method of evaluating gap junctional communication by fluorescent dye transfer.
We describe a simple method for evaluating gap junctional communication (GJC) between cells in culture. The procedure involves pre-loading cells with two fluorescent dyes: calcein and DiI. Calcein is able to pass through gap junctions, while DiI is not. These pre-loaded cells are then plated with unlabeled cells. The number of cells receiving calcein from each pre-loaded cell can then be quantified after the cells settle on the plate. Potent and reversible inhibitors of GJC can be used in this system to evaluate dye transfer within a given period of time. Topics: Carbenoxolone; Carbocyanines; Cell Communication; Cell Line; Cell Line, Transformed; Connexin 43; Fluoresceins; Fluorescent Dyes; Gap Junctions; Glycyrrhetinic Acid; Microscopy, Fluorescence; Oncogene Protein pp60(v-src); Stereoisomerism; Succinates | 1995 |