carbocyanines and estrone-sulfate

carbocyanines has been researched along with estrone-sulfate* in 2 studies

Other Studies

2 other study(ies) available for carbocyanines and estrone-sulfate

ArticleYear
New method for recognition of sterol signalling molecules: methinium salts as receptors for sulphated steroids.
    Steroids, 2015, Volume: 94

    In this work, we studied indolium and benzothiazolium pentamethine salts 1-3 as novel type of receptors for the recognition of sulphated signalling molecules (sulphated steroids: oestrone, pregnenolone and cholesterol sulphate). A recognition study was performed in an aqueous medium (1mM phosphate buffer (H2O:MeOH; 99:1 (v/v))) at pH 7.34. The tested salts displayed a high affinity for these sulphated analytes, mainly for cholesterol sulphate. However, no interaction between the salts and control, non-sulphated sterol analytes (cholesterol and bile acid) was observed. The highest affinity for the sulphated steroids was observed for benzothiazole salt 1. This salt also displayed different spectral behaviour from that observed for carbocyanine salts 2 and 3. In this presence of cholesterol sulphate, benzothiazole salt 1 displayed significant spectral changes depending on the medium used: a blue shift in the aqueous medium and a red shift in the methanolic one (H2O:MeOH; 2:1 (v/v)). Subsequently preliminary in vivo study showed that, salt 1 significantly inhibits a growth of breast carcinoma on Nu/nu mice model.

    Topics: Animals; Antineoplastic Agents; Benzothiazoles; Breast Neoplasms; Carbocyanines; Cholesterol Esters; Estrone; Female; Heterocyclic Compounds; Mice, Nude; Pregnenolone; Xenograft Model Antitumor Assays

2015
Using human microarrays to identify differentially expressed genes associated with increased steroidogenesis in boars.
    Animal biotechnology, 2005, Volume: 16, Issue:2

    Human microarrays are readily available, and it would be advantageous if they could be used to study gene expression in other species, such as pigs. The objectives of this research were to validate the use of human microarrays in the analysis of porcine gene expression, to assess the variability of the data generated, and to compare gene expression in boars with different levels of steroidogenesis. Cytochrome b5 (CYB5) expression was used to assess array detection sensitivity. Samples having high or low CYB5 RNA levels were hybridized to microarrays to determine if the known expression difference could be detected. Six hybridizations were conducted using human microarrays containing 3840 total spots representing 1718 characterized human ESTs. To analyze gene expression in boars with different levels of steroidogenesis, testis RNA from four boars with high levels of plasma estrone sulphate was hybridized to testis RNA from four boars with lower levels. Eight microarray hybridizations were conducted including fluor-flips. Self-self hybridizations were also conducted to assess the variability of array experiments. The Cy5 and Cy3 intensity values for each array were normalized using a locally weighted linear regression (LOESS). Statistical significance was assessed using a Student's t-test followed by the Benjamini and Hochberg multiple testing correction procedure. Quantitative real-time PCR (Q-RT-PCR) was used to verify select gene expression differences. The results show that CYB5 was significantly overexpressed in the high CYB5 sample by 1.8 fold (P < 0.05), verifying the known expression difference. The average log2 ratio of the majority of genes (1643) falls within one standard deviation of the mean, indicating the data were reproducible. In the high versus low steroidogenesis experiment, seven genes were significantly overexpressed in the high group (P < 0.05). Quantitative real-time PCR was used to validate five genes with the highest fold change, and the results corroborated those found by the microarray experiments. The results of the self-self hybridizations showed that no genes were significantly differentially expressed following the application of the Benjamini and Hochberg multiple testing correction procedure. The results presented in this report show that human arrays can be used for gene expression analysis in pigs.

    Topics: Animals; Carbocyanines; Cytochromes b5; Estrone; Fluorescent Dyes; Gene Expression Regulation, Enzymologic; Humans; Male; Nucleic Acid Hybridization; Oligonucleotide Array Sequence Analysis; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; RNA; Swine; Testis

2005