carbocyanines and 2-2--dipicolylamine

carbocyanines has been researched along with 2-2--dipicolylamine* in 2 studies

Other Studies

2 other study(ies) available for carbocyanines and 2-2--dipicolylamine

ArticleYear
Detecting Zn(II) Ions in Live Cells with Near-Infrared Fluorescent Probes.
    Molecules (Basel, Switzerland), 2019, Apr-22, Volume: 24, Issue:8

    Two near-infrared fluorescent probes (

    Topics: Amines; Carbocyanines; Fluorescent Dyes; HeLa Cells; Humans; Microscopy, Fluorescence; Picolinic Acids; Zinc

2019
Optical imaging of articular cartilage degeneration using near-infrared dipicolylamine probes.
    Biomaterials, 2014, Volume: 35, Issue:26

    Articular cartilage is the hydrated tissue that lines the ends of long bones in load bearing joints and provides joints with a smooth, nearly frictionless gliding surface. However, the deterioration of articular cartilage occurs in the early stages of osteoarthritis (OA) and is clinically and radiographically silent. Here two cationic near infrared fluorescent (NIRF) dipicolylamine (DPA) probes, Cy5-DPA-Zn and Cy7-DPA-Zn, were prepared for cartilage degeneration imaging and OA early detection through binding to the anionic glycosaminoglycans (GAGs). The feasibility of NIRF dye labeled DPA-Zn probes for cartilage degeneration imaging was examined ex vivo and in vivo. The ex vivo studies showed that Cy5-DPA-Zn and Cy7-DPA-Zn not only showed the high uptake and electrostatic attractive binding to cartilage, but also sensitively reflected the change of GAGs contents. In vivo imaging study further indicated that Cy5-DPA-Zn demonstrated higher uptake and retention in young mice (high GAGs) than old mice (low GAGs) when administrated via local injection in mouse knee joints. More importantly, Cy5-DPA-Zn showed dramatic higher signals in sham joint (high GAGs) than OA side (low GAGs), through sensitive reflecting the change of GAGs in the surgical induced OA models. In summary, Cy5-DPA-Zn provides promising visual detection for early cartilage pathological degeneration in living subjects.

    Topics: Amines; Animals; Carbocyanines; Cartilage, Articular; Female; Fluorescent Dyes; Glycosaminoglycans; Humans; Infrared Rays; Knee Joint; Mice; Mice, Nude; Optical Imaging; Osteoarthritis; Picolinic Acids

2014