carbocyanines has been researched along with 1-palmitoyl-2-oleoylphosphatidylcholine* in 8 studies
8 other study(ies) available for carbocyanines and 1-palmitoyl-2-oleoylphosphatidylcholine
Article | Year |
---|---|
Direct visualization of the lateral structure of giant vesicles composed of pseudo-binary mixtures of sulfatide, asialo-GM1 and GM1 with POPC.
We compared the lateral structure of giant unilamellar vesicles (GUVs) composed of three pseudo binary mixtures of different glycosphingolipid (GSL), i.e. sulfatide, asialo-GM1 or GM1, with POPC. These sphingolipids possess similar hydrophobic residues but differ in the size and charge of their polar head group. Fluorescence microscopy experiments using LAURDAN and DiIC Topics: 2-Naphthylamine; Carbocyanines; Fluorescent Dyes; G(M1) Ganglioside; Laurates; Lipid Bilayers; Microscopy, Fluorescence; Molecular Structure; Phosphatidylcholines; Sulfoglycosphingolipids; Unilamellar Liposomes | 2018 |
Membrane Deformation Induces Clustering of Norovirus Bound to Glycosphingolipids in a Supported Cell-Membrane Mimic.
Quartz crystal microbalance with dissipation monitoring and total internal reflection fluorescence microscopy have been used to investigate binding of norovirus-like particles (noroVLPs) to a supported (phospho)lipid bilayer (SLB) containing a few percent of H or B type 1 glycosphingolipid (GSL) receptors. Although neither of these GSLs spontaneously form domains, noroVLPs were observed to form micron-sized clusters containing typically up to about 30 VLP copies, especially for B type 1, which is a higher-affinity receptor. This novel finding is explained by proposing a model implying that VLP-induced membrane deformation promotes VLP clustering, a hypothesis that was further supported by observing that functionalized gold nanoparticles were able to locally induce SLB deformation. Because similar effects are likely possible also at cellular membranes, our findings are interesting beyond a pure biophysicochemical perspective as they shed new light on what may happen during receptor-mediated uptake of viruses as well as nanocarriers in drug delivery. Topics: Carbocyanines; Fluorescence; Fluorescent Dyes; Glycosphingolipids; Gold; Humans; Lipid Bilayers; Metal Nanoparticles; Microscopy, Fluorescence; Norovirus; Phosphatidylcholines | 2018 |
Sculpting and fusing biomimetic vesicle networks using optical tweezers.
Constructing higher-order vesicle assemblies has discipline-spanning potential from responsive soft-matter materials to artificial cell networks in synthetic biology. This potential is ultimately derived from the ability to compartmentalise and order chemical species in space. To unlock such applications, spatial organisation of vesicles in relation to one another must be controlled, and techniques to deliver cargo to compartments developed. Herein, we use optical tweezers to assemble, reconfigure and dismantle networks of cell-sized vesicles that, in different experimental scenarios, we engineer to exhibit several interesting properties. Vesicles are connected through double-bilayer junctions formed via electrostatically controlled adhesion. Chemically distinct vesicles are linked across length scales, from several nanometres to hundreds of micrometres, by axon-like tethers. In the former regime, patterning membranes with proteins and nanoparticles facilitates material exchange between compartments and enables laser-triggered vesicle merging. This allows us to mix and dilute content, and to initiate protein expression by delivering biomolecular reaction components. Topics: Amino Acids; Bacterial Toxins; Biological Transport; Biomimetic Materials; Carbocyanines; Gene Expression; Green Fluorescent Proteins; Hemolysin Proteins; Lasers; Lipid Bilayers; Membrane Fusion; Optical Tweezers; Phosphatidylcholines; Phosphatidylethanolamines; Ribonucleotides; RNA, Transfer; Sodium Chloride | 2018 |
Cellular Membrane Composition Requirement by Antimicrobial and Anticancer Peptide GA-K4.
Naturally occurring antimicrobial peptides important for innate immunity are widely studied for their antimicrobial and anticancer activity. The primary target of these AMPs is believed to be the bacterial cytoplasmic membrane. However, the interaction between cytoplasmic membrane and the antimicrobial peptides remains poorly understood. Therefore to focus on the target membrane composition that is required by AMPs to interact with membranes, we have examined the interaction of the antimicrobial and anticancer active 11-residue GA-K4 (FLKWLFKWAKK) peptide with model and intact cell membranes. Effect on the structural conformational properties of GA-K4 peptide was investigated by means of far-UV CD and fluorescence spectroscopic methods. The different conformation of GA-K4 peptide in large unilamellar vesicles (LUV) bilayer and micelle environment suggest that the curvature has an influence on the secondary structure acquired by the peptide. Furthermore, the leakage experiment result confirmed that GA-K4 induced the leakage of cytoplasmic membrane in Staphylococcus аureus bacterial cells. Fluorescence data revealed the interfacial location of GA-K4 peptide in the model membranes. The blue-shift in emission wavelength by tryptophan residues in fluorescence data indicated the penetration of GA-K4 peptide in micelles and phospholipid bilayers. These results showed that the GA-K4 peptide is a membrane-active peptide and its activity depends on membrane curvature and lipid composition. Although further studies are required to confirm the mechanism of action, the data suggest mechanism of toroidal pore formation for the interaction of GA-K4 peptide with membranes. Our studies will be helpful in better understanding of the membrane requirment of peptides to express their therapeutic effects. Topics: Amino Acid Sequence; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Antineoplastic Agents; Benzothiazoles; Carbocyanines; Cell Membrane; Cell Membrane Permeability; Fluorescent Dyes; Kinetics; Lipid Bilayers; Lysophosphatidylcholines; Micelles; Phosphatidylcholines; Phosphatidylethanolamines; Phosphatidylglycerols; Protein Structure, Secondary; Spectrometry, Fluorescence; Staphylococcus aureus; Unilamellar Liposomes | 2017 |
Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
The effects of hydrophobic thickness and the molar phosphatidylglycerol (PG) content of lipid bilayers on the structure and membrane interaction of three cationic antimicrobial peptides were examined: aurein 2.2, aurein 2.3 (almost identical to aurein 2.2, except for a point mutation at residue 13), and a carboxy C-terminal analog of aurein 2.3. Circular dichroism results indicated that all three peptides adopt an alpha-helical structure in the presence of a 3:1 molar mixture of 1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPC/DMPG), and 1:1 and 3:1 molar mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/1-palmitoyl-2-oleoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (POPC/POPG). Oriented circular dichroism data for three different lipid compositions showed that all three peptides were surface-adsorbed at low peptide concentrations, but were inserted into the membrane at higher peptide concentrations. The (31)P solid-state NMR data of the three peptides in the DMPC/DMPG and POPC/POPG bilayers showed that all three peptides significantly perturbed lipid headgroups, in a peptide or lipid composition-dependent manner. Differential scanning calorimetry results demonstrated that both amidated aurein peptides perturbed the overall phase structure of DMPC/DMPG bilayers, but perturbed the POPC/POPG chains less. The nature of the perturbation of DMPC/DMPG bilayers was most likely micellization, and for the POPC/POPG bilayers, distorted toroidal pores or localized membrane aggregate formation. Calcein release assay results showed that aurein peptide-induced membrane leakage was more severe in DMPC/DMPG liposomes than in POPC/POPG liposomes, and that aurein 2.2 induced higher calcein release than aurein 2.3 and aurein 2.3-COOH from 1:1 and 3:1 POPC/POPG liposomes. Finally, DiSC(3)5 assay data further delineated aurein 2.2 from the others by showing that it perturbed the lipid membranes of intact S. aureus C622 most efficiently, whereas aurein 2.3 had the same efficiency as gramicidin S, and aurein 2.3-COOH was the least efficient. Taken together, these data show that the membrane interactions of aurein peptides are affected by the hydrophobic thickness of the lipid bilayers and the PG content. Topics: Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Anura; Benzothiazoles; Carbocyanines; Cell Membrane; Cell Membrane Permeability; Dimyristoylphosphatidylcholine; Fluoresceins; Gramicidin; Lipid Bilayers; Membrane Potentials; Phosphatidylcholines; Phosphatidylglycerols; Protein Structure, Secondary; Staphylococcus aureus | 2009 |
Sorting of lipids and proteins in membrane curvature gradients.
The sorting of lipids and proteins in cellular trafficking pathways is a process of central importance in maintaining compartmentalization in eukaryotic cells. However, the mechanisms behind these sorting phenomena are currently far from being understood. Among several mechanistic suggestions, membrane curvature has been invoked as a means to segregate lipids and proteins in cellular sorting centers. To assess this hypothesis, we investigate the sorting of lipid analog dye trace components between highly curved tubular membranes and essentially flat membranes of giant unilamellar vesicles. Our experimental findings indicate that intracellular lipid sorting, contrary to frequent assumptions, is unlikely to occur by lipids fitting into membrane regions of appropriate curvature. This observation is explained in the framework of statistical mechanical lattice models that show that entropy, rather than curvature energy, dominates lipid distribution in the absence of strongly preferential lateral intermolecular interactions. Combined with previous findings of curvature induced phase segregation, we conclude that lipid cooperativity is required to enable efficient sorting. In contrast to lipid analog dyes, the peripheral membrane binding protein Cholera toxin subunit B is effectively curvature-sorted. The sorting of Cholera toxin subunit B is rationalized by statistical models. We discuss the implications of our findings for intracellular sorting mechanisms. Topics: Animals; Biomechanical Phenomena; Carbocyanines; Cattle; Cell Membrane; Cholera Toxin; Fluorescence; Fluorescence Recovery After Photobleaching; Fluorescent Dyes; Intracellular Membranes; Lipid Metabolism; Microspheres; Phosphatidylcholines; Proteins; Unilamellar Liposomes | 2009 |
Different modes in antibiotic action of tritrpticin analogs, cathelicidin-derived Trp-rich and Pro/Arg-rich peptides.
The cathelicidin-derived antimicrobial tritrpticin could be classified as either Trp-rich or Pro/Arg-rich peptide. We recently found that the sequence modification of tritrpticin focused on Trp and Pro residues led to considerable change in structure and antimicrobial potency and selectivity, but their mechanisms of microbial killing action were still unclear. Here, to better understand the bactericidal mechanisms of tritrpticin and its two analogs, TPA and TWF, we studied their effect on the viability of Gram-positive S. aureus and Gram-negative E. coli in relation to their membrane depolarization. Although TWF more effectively inhibited growth of S. aureus and E. coli than TPA, only a 30 min exposure to TPA was sufficient to kill both bacteria and TWF required a lag period of about 3-6 h for bactericidal activity. Their different bactericidal kinetics was associated with membrane permeabilization, i.e., TWF showed negligible ability to depolarize the cytoplasmic membrane potential of target cell membrane, whereas we observed significant membrane depolarization for TPA. In addition, while TPA caused rapid and large dye leakage from negatively charged model vesicles, TWF showed very little membrane-disrupting activity. Interestingly, we have looked for a synergism among the three peptides against E. coli, supporting that they are working with different modes of action. Collectively, our results suggest that TPA disrupts the ion gradients across the membrane, causing depolarization and a loss of microbial viability. By contrast, TWF more likely translocates across the cytoplasmic membrane without depolarization and then acts against one or more intracellular targets. Tritrpticin exhibits intermediate properties and appears to act via membrane depolarization coupled to secondary intracellular targeting. Topics: Amino Acid Sequence; Antimicrobial Cationic Peptides; Carbocyanines; Cathelicidins; Cell Membrane; Drug Synergism; Escherichia coli; Membranes, Artificial; Microbial Sensitivity Tests; Oligopeptides; Phosphatidylcholines; Phosphatidylglycerols; Staphylococcus aureus | 2006 |
Shape relaxations in a fluid supported membrane during hydrolysis by phospholipase A(2).
The behavior of a fluid supported membrane during hydrolysis by phospholipase A(2) is for the first time visualized by time-resolved fluorescence imaging. After a lag phase, hydrolysis proceeds from the boundary of existing holes and via nucleation of new holes. During subsequent hydrolysis, the shape of the membrane boundary is determined both by hydrolysis and by shape relaxations due to the action of line tension. This is manifested by the appearance of Rayleigh instabilities in membrane rims and by an effect analogous to domain coarsening in phase transitions in which membrane holes decay when they are within a certain distance from larger and expanding holes. Topics: Carbocyanines; Hydrolysis; Lipid Bilayers; Membrane Fluidity; Microscopy, Fluorescence; Phosphatidylcholines; Phospholipases A | 2005 |