carbobenzoxy-leucyl-leucyl-norvalinal and pyrazolanthrone

carbobenzoxy-leucyl-leucyl-norvalinal has been researched along with pyrazolanthrone* in 1 studies

Other Studies

1 other study(ies) available for carbobenzoxy-leucyl-leucyl-norvalinal and pyrazolanthrone

ArticleYear
Effect of MG132, a proteasome inhibitor, on the expression of growth related oncogene protein-alpha in human umbilical vein endothelial cells.
    Cytokine, 2003, Nov-07, Volume: 24, Issue:3

    Growth related oncogene protein-alpha (GRO-alpha) is a member of C-X-C chemokine and plays an important role in inflammatory responses. Expression of GRO gene family is regulated by a number of factors at both transcriptional and posttranscriptional levels. In the present study, we have addressed the possible regulation of GRO-alpha expression by ubiquitin-proteasome system. Cultures of human umbilical vein endothelial cells were treated with a proteasome inhibitor, MG132, and the levels of GRO-alpha mRNA were analyzed by reverse transcription-polymerase chain reaction or northern blotting. Levels of GRO-alpha protein in the cell-conditioned medium were determined by enzyme-linked immunosorbent assay. MG132 alone increased the levels of GRO-alpha mRNA and protein; however, it did not affect the GRO-alpha mRNA induced by lipopolysaccharide (LPS) and inhibited the LPS-induced decrease in IkappaB levels. Other proteasome inhibitors, MG115 and lactacystin, also induced the expression of GRO-alpha mRNA. MG132 induced the phosphorylation of p38 MAPK, MEK and JNK. Pretreatment of the cells with SB203580, an inhibitor of p38 MAPK, suppressed the MG132-induced GRO-alpha expression, but pretreatment of the cells with U0126, PD98059 or SP600125, inhibitors of MEK1/2 or JNK, did not influence the effect of MG132. We conclude that MG132 upregulates GRO-alpha expression in vascular endothelial cells, at least in part, through the activation of p38 MAPK.

    Topics: Acetylcysteine; Anthracenes; Cells, Cultured; Chemokine CXCL1; Chemokines, CXC; Cysteine Proteinase Inhibitors; Endothelium, Vascular; Enzyme Inhibitors; Flavonoids; Gene Expression Regulation; Humans; I-kappa B Proteins; Imidazoles; Intercellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; Leupeptins; MAP Kinase Kinase Kinase 1; MAP Kinase Kinase Kinases; Mitogen-Activated Protein Kinases; NF-kappa B; p38 Mitogen-Activated Protein Kinases; Phosphorylation; Pyridines; Umbilical Veins

2003