carbidopa and buthionine sulfoximine

carbidopa has been researched along with buthionine sulfoximine in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19901 (25.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J1
Clavier, RM; Foulks, JG; Godin, DV; Ito, M; Perry, TL; Wall, RA; Yong, VW1
Canals, S; Casarejos, MJ; de Bernardo, S; Handler, A; Mena, MA; Rodríguez-Martín, E1

Other Studies

4 other study(ies) available for carbidopa and buthionine sulfoximine

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
    Nature chemical biology, 2009, Volume: 5, Issue:10

    Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection

2009
Nigrostriatal dopaminergic neurons remain undamaged in rats given high doses of L-DOPA and carbidopa chronically.
    Journal of neurochemistry, 1984, Volume: 43, Issue:4

    Topics: Animals; Buthionine Sulfoximine; Carbidopa; Corpus Striatum; Dopamine; Female; Glutathione; Levodopa; Methionine Sulfoximine; Neurons; Rats; Rats, Inbred Strains; Substantia Nigra; Tyrosine 3-Monooxygenase

1984
L-DOPA and glia-conditioned medium have additive effects on tyrosine hydroxylase expression in human catecholamine-rich neuroblastoma NB69 cells.
    Journal of neurochemistry, 2001, Volume: 78, Issue:3

    Topics: Antioxidants; Apoptosis; Ascorbic Acid; bcl-X Protein; Buthionine Sulfoximine; Carbidopa; Cell Differentiation; Culture Media, Conditioned; Culture Media, Serum-Free; Dopamine; Dopamine Agents; Dose-Response Relationship, Drug; Enzyme Inhibitors; Glutathione; Humans; Immunoblotting; Immunohistochemistry; In Situ Nick-End Labeling; Levodopa; Neuroblastoma; Neuroglia; Neurons; Proto-Oncogene Proteins c-bcl-2; Time Factors; Tumor Cells, Cultured; Tyrosine 3-Monooxygenase

2001