carbenoxolone sodium has been researched along with 4-aminopyridine in 17 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 12 (70.59) | 29.6817 |
2010's | 4 (23.53) | 24.3611 |
2020's | 1 (5.88) | 2.80 |
Authors | Studies |
---|---|
Bibbig, R; Draguhn, R; Piechotta, A; Schmitz, D; Traub, RD | 1 |
Michelson, HB; Yang, Q | 1 |
Gajda, Z; Hermesz, E; Said Ali, K; Szente, M | 1 |
Buhl, EH; Hormuzdi, SG; LeBeau, FE; Monyer, H; Pais, I; Traub, RD; Whittington, MA; Wood, IC | 1 |
Ali, KS; Gajda, Z; Gyengési, E; Hermesz, E; Szente, M | 1 |
Albrecht, D; Klueva, J; Munsch, T; Pape, HC | 1 |
Blazsó, G; Gajda, Z; Szente, M; Szupera, Z | 1 |
Gigout, S; Louvel, J; Pumain, R | 1 |
Armand, V; Avoli, M; D'Antuono, M; Devaux, B; Gigout, S; Kawasaki, H; Kurcewicz, I; Laschet, J; Louvel, J; Olivier, A; Pumain, R; Turak, B | 1 |
Gajda, Z; Gyengési, E; Hermesz, E; Szente, M; Szupera, Z | 1 |
Aradi, I; Maccaferri, G; Zsiros, V | 1 |
Cordero-Romero, A; Medina-Ceja, L; Morales-Villagrán, A | 1 |
Beaumont, M; Maccaferri, G | 1 |
Gajda, Z; Horváth, Z; Kéri, G; Orfi, L; Szántai-Kis, C; Szente, M; Török, R | 1 |
Bauriedl, J; Bussek, A; Lohmann, H; Ravens, U; Schmidt, M; Wettwer, E | 1 |
Baird-Daniel, E; Daniel, AGS; Laffont, P; Li, D; Liou, JY; Ma, H; Schwartz, TH; Wenzel, M; Yuste, R; Zhao, M | 1 |
Alves, JM; Ganina, O; Ignashchenkova, A; Inyushin, M; Tsytsarev, V; Vélez-Crespo, GE; Volnova, A | 1 |
17 other study(ies) available for carbenoxolone sodium and 4-aminopyridine
Article | Year |
---|---|
Synaptic and nonsynaptic contributions to giant ipsps and ectopic spikes induced by 4-aminopyridine in the hippocampus in vitro.
Topics: 4-Aminopyridine; Action Potentials; Animals; Axons; Carbenoxolone; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA-B Receptor Antagonists; Gap Junctions; Hippocampus; In Vitro Techniques; Interneurons; Nerve Net; Neural Inhibition; Neural Networks, Computer; Potassium Channel Blockers; Pyramidal Cells; Rats; Rats, Wistar; Synaptic Transmission | 2001 |
Gap junctions synchronize the firing of inhibitory interneurons in guinea pig hippocampus.
Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Bicuculline; Carbenoxolone; Convulsants; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Gap Junctions; Guinea Pigs; Hippocampus; Interneurons; Piperazines; Pyramidal Cells; Receptors, AMPA; Receptors, GABA-B; Receptors, N-Methyl-D-Aspartate; Synaptic Transmission | 2001 |
Involvement of electrical coupling in the in vivo ictal epileptiform activity induced by 4-aminopyridine in the neocortex.
Topics: 4-Aminopyridine; Action Potentials; Animals; Carbenoxolone; Connexin 43; Connexins; Cortical Synchronization; Epilepsy; Female; Gap Junction beta-1 Protein; Gap Junctions; Male; Neocortex; Neurons; Potassium Channel Blockers; Rats; Rats, Wistar; RNA, Messenger; Synaptic Transmission | 2002 |
Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36.
Topics: 4-Aminopyridine; Action Potentials; Animals; Carbenoxolone; Connexins; Excitatory Amino Acid Agonists; gamma-Aminobutyric Acid; Gap Junction delta-2 Protein; Gap Junctions; Hippocampus; In Vitro Techniques; Interneurons; Kainic Acid; Male; Mice; Mice, Knockout; Neural Inhibition; Neural Pathways; Periodicity; Potassium Channel Blockers | 2003 |
Involvement of gap junctions in the manifestation and control of the duration of seizures in rats in vivo.
Topics: 4-Aminopyridine; Animals; Carbenoxolone; Cerebral Cortex; Connexin 43; Connexins; Disease Models, Animal; Electroencephalography; Epilepsy; Female; Gap Junction beta-1 Protein; Gap Junction delta-2 Protein; Gap Junctions; Gene Expression; Male; Methylamines; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2003 |
Synaptic and non-synaptic mechanisms of amygdala recruitment into temporolimbic epileptiform activities.
Topics: 4-Aminopyridine; Action Potentials; Amygdala; Anesthetics, Local; Animals; Anti-Ulcer Agents; Bicuculline; Carbenoxolone; Dissection; Electric Stimulation; Entorhinal Cortex; Epilepsy; Evoked Potentials; Extracellular Space; GABA Antagonists; Hippocampus; In Vitro Techniques; Male; Neurons; Phosphinic Acids; Potassium; Propanolamines; Rats; Rats, Wistar; Reaction Time; Synapses; Tetrodotoxin; Time Factors | 2003 |
Quinine, a blocker of neuronal cx36 channels, suppresses seizure activity in rat neocortex in vivo.
Topics: 4-Aminopyridine; Animals; Astrocytes; Carbenoxolone; Cerebral Cortex; Connexins; Dose-Response Relationship, Drug; Electroencephalography; Female; Gap Junction delta-2 Protein; Gap Junctions; Male; Neocortex; Neural Pathways; Neurons; Octanols; Quinine; Rats; Rats, Wistar; Seizures | 2005 |
Effects in vitro and in vivo of a gap junction blocker on epileptiform activities in a genetic model of absence epilepsy.
Topics: 4-Aminopyridine; Animals; Anticonvulsants; Carbenoxolone; Cerebral Cortex; Disease Models, Animal; Electroencephalography; Epilepsy, Absence; Evoked Potentials; Gap Junctions; Potassium Channel Blockers; Rats; Rats, Inbred Strains; Rats, Wistar; Seizures; Sodium Chloride; Somatosensory Cortex; Thalamic Nuclei | 2006 |
Effects of gap junction blockers on human neocortical synchronization.
Topics: 4-Aminopyridine; Adolescent; Adult; Aged; Brain Diseases; Carbenoxolone; Child; Cortical Synchronization; Epilepsy, Temporal Lobe; Excitatory Amino Acid Agents; Gap Junctions; Humans; Membrane Potentials; Middle Aged; Neocortex; Octanols; Organ Culture Techniques; Potassium Channel Blockers; Quinidine; Quinine; Receptors, GABA; Receptors, N-Methyl-D-Aspartate | 2006 |
The functional significance of gap junction channels in the epileptogenicity and seizure susceptibility of juvenile rats.
Topics: 4-Aminopyridine; Animals; Animals, Newborn; Carbenoxolone; Connexins; Cortical Synchronization; Disease Models, Animal; Disease Susceptibility; Electroencephalography; Epilepsy; Female; Gap Junctions; Gene Expression; Male; Methylamines; Neocortex; Rats; Rats, Wistar; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Seizures | 2006 |
Propagation of postsynaptic currents and potentials via gap junctions in GABAergic networks of the rat hippocampus.
Topics: 4-Aminopyridine; Action Potentials; Animals; Carbenoxolone; Computer Simulation; Excitatory Postsynaptic Potentials; GABA Antagonists; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; Gap Junctions; Hippocampus; Interneurons; Kinetics; Membrane Potentials; Models, Neurological; Patch-Clamp Techniques; Pyridazines; Rats; Receptors, GABA-A; Synaptic Transmission | 2007 |
Antiepileptic effect of carbenoxolone on seizures induced by 4-aminopyridine: a study in the rat hippocampus and entorhinal cortex.
Topics: 4-Aminopyridine; Animals; Anti-Ulcer Agents; Anticonvulsants; Carbenoxolone; Convulsants; Drug Interactions; Entorhinal Cortex; Epilepsy; Evoked Potentials; Gap Junctions; Hippocampus; Male; Potassium Channel Blockers; Rats; Rats, Wistar | 2008 |
Is connexin36 critical for GABAergic hypersynchronization in the hippocampus?
Topics: 4-Aminopyridine; Animals; Anticonvulsants; Carbenoxolone; Connexins; Epilepsy; gamma-Aminobutyric Acid; Gap Junction delta-2 Protein; Gap Junctions; Hippocampus; In Vitro Techniques; Interneurons; Mice; Mice, 129 Strain; Mice, Inbred C57BL; Mice, Knockout; Models, Neurological; Patch-Clamp Techniques; Pregnenolone; Receptors, GABA-A | 2011 |
Protein kinase inhibitor as a potential candidate for epilepsy treatment.
Topics: 4-Aminopyridine; Animals; Anticonvulsants; Carbamazepine; Carbenoxolone; Cerebral Cortex; Electroencephalography; Epilepsy; Female; Heart Rate; Levetiracetam; Male; Piracetam; Premedication; Protein Kinase Inhibitors; Rats; Rats, Wistar; Signal Processing, Computer-Assisted | 2011 |
Cardiac tissue slices with prolonged survival for in vitro drug safety screening.
Topics: 4-Aminopyridine; Action Potentials; Animal Testing Alternatives; Animals; Animals, Laboratory; Anti-Arrhythmia Agents; Calcium Channel Blockers; Carbenoxolone; Disease Models, Animal; Drug Evaluation, Preclinical; Drug-Related Side Effects and Adverse Reactions; Guinea Pigs; Heart Ventricles; In Vitro Techniques; Male; Nifedipine; Piperidines; Potassium Channel Blockers; Pyridines; Rats; Rats, Wistar; Risk Assessment; Toxicity Tests | 2012 |
Glial Calcium Waves are Triggered by Seizure Activity and Not Essential for Initiating Ictal Onset or Neurovascular Coupling.
Topics: 4-Aminopyridine; Animals; Brain Mapping; Calcium; Calcium Signaling; Carbenoxolone; Diagnostic Imaging; Disease Models, Animal; Epilepsy; Evoked Potentials, Somatosensory; Male; Neuroglia; Neurons; Neurovascular Coupling; Potassium Channel Blockers; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Somatosensory Cortex; Tetrodotoxin | 2017 |
The Anti-Epileptic Effects of Carbenoxolone In Vitro and In Vivo.
Topics: 4-Aminopyridine; Action Potentials; Animals; Anticonvulsants; Astrocytes; Carbenoxolone; Electrocorticography; Epilepsy; Gap Junctions; Hippocampus; Humans; Models, Biological; Neurons; Potassium | 2022 |