carbamates and nateglinide

carbamates has been researched along with nateglinide in 71 studies

Research

Studies (71)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's10 (14.08)18.2507
2000's47 (66.20)29.6817
2010's11 (15.49)24.3611
2020's3 (4.23)2.80

Authors

AuthorsStudies
Bakkali-Nadi, A; Malaisse, WJ; Malaisse-Lagae, F1
Brasseur, R; Lins, L; Malaisse, WJ1
Malaisse, WJ2
Bakkali Nadi, A; Malaisse, WJ; Zhang, TM1
Kikuchi, M2
Fuhlendorff, J; Ladrière, L; Leclercq-Meyer, V; Malaisse, WJ1
Dunning, BE; Hu, S; Wang, S3
Smits, P; Tack, CJ1
Bokvist, K; Buschard, K; Gromada, J; Holst, JJ; Hoy, M; Thomsen, MK1
Bell, PA; Boettcher, BR; Dunning, BE; Fanelli, B; Geisse, S; Hu, S; Schmitz, R; Wang, S1
Füchtenbusch, M; Schatz, H; Standl, E1
Landgraf, R1
Kalbag, JB; McLeod, JF; Nedelman, JR; Walter, YH1
de Souza, CJ; Dunning, BE; Lozito, R; Russo, P1
Dunning, BE; Foley, JE; Pratley, RE1
Hu, S; Wang, S1
Sternon, J1
Dornhorst, A1
Nelson, G1
Koivisto, V1
Hu, S1
Ahmann, AJ; Riddle, MC1
Bokvist, K; Gotfredsen, CF; Gromada, J; Hansen, BS; Høy, M; Lindström, P; Olsen, HL; Rorsman, P; Thomsen, MK1
Ashcroft, FM; Carr, RD; Christensen, IT; Hansen, AM; Hansen, JB; Wahl, P1
Davies, MJ1
Göke, B; Parhofer, KG1
Deacon, R; Dunning, BE; Foley, JE; Gutierrez, C; Paladini, S; Valentin, MA1
Birkeland, KI; Bleskestad, IH1
Bokvist, K; Buschard, K; Gromada, J; Holst, JJ; Høy, M; Krogsgaard Thomsen, M; Lindström, P1
Hale, PM; Hollander, P; Khutoryansky, N; Klaff, L; McGill, J; Raskin, P; South, SA1
Yoshida, T; Yoshikawa, T; Yoshioka, K1
Baron, MA1
Haslbeck, M; Jakob, S; Kellerer, M; Linn, T1
Brazinsky, SA; Farrell, J; Hale, PM; Hassman, DR; Khutoryansky, N; Madder, RD; Rosenstock, J1
Gall, MA; Lammert, M; Minshall, ME; Nicklasson, L; Palmer, AJ; Roze, S; Spinas, GA; Valentine, WJ1
Berney, T; Bosco, D; Carr, RD; Donath, MY; Maedler, K; Zuellig, RA1
Blackburn, GL1
Li, JW; Tian, HM; Wang, JN; Yu, HL; Zhang, XX; Zhao, GZ1
Gao, LM; Song, DQ; Yang, P1
Erkent, U; Ertunc, M; Guc, MO; Ilhan, M; Iskit, AB; Onur, R1
Scheen, AJ1
Black, C; Donnelly, P; McIntyre, L; Royle, PL; Shepherd, JP; Thomas, S1
Bieger, S; Kühner, P; Quast, U; Stephan, D; Winkler, M; Wolff, F1
Huang, L; Li, J; Li, Q; Li, Y; Liang, J; Liu, Y; Luo, R; Ni, Z; Tian, H; Wang, N; Wu, T; Yu, H1
Kalliokoski, A; Neuvonen, M; Neuvonen, PJ; Niemi, M1
Kapoor, JR1
Backman, JT; Kalliokoski, A; Neuvonen, PJ; Niemi, M1
Li, C; Wang, L; Wang, S; Xia, J; Zhang, G1
Cornelius, V; Kasliwal, R; Shakir, SA; Vlckova, V; Wilton, L1
Davis, SN1
Aoyagi, K; Nagamatsu, S; Nakamichi, Y; Nishiwaki, C; Ohara-Imaizumi, M1
Longo, R1
Kalliokoski, A; Neuvonen, PJ; Niemi, M1
Blanco, H; Góõmez, MP; Laguna, JJ; Rojas, P; Sánchez, L; Santos, A1
Abdelmoneim, AS; Brocks, DR; Hasenbank, SE; Light, PE; Seubert, JM; Simpson, SH1
Busse, R; Kreis, J1
Jung, JS; Kim, CH; Kim, SJ; Kim, SS; Lim, SM; Park, SH; Sim, YB; Suh, HW1
Chen, M; Hu, C; Jia, W1
DeFronzo, RA; Ferrannini, E1
Bilker, WB; Brensinger, CM; Chiang, C; Han, X; Hennessy, S; Leonard, CE; Li, L1
Aoyama, S; Fujino, R; Hashizume, K; Ito, K; Lee, W; Maeda, K; Ninomiya, SI; Sugiyama, Y; Toshimoto, K1
Lin, FJ; Lin, SY; Wang, CC; Wei, Y1
Hage, DS; Li, Z; Ovbude, ST; Tao, P1
Chen, X; Chen, Y; He, S; Li, G; Qian, X; Shen, X; Xu, X; Zhang, B1
Bilker, WB; Brensinger, CM; Flory, JH; Hee Nam, Y; Hennessy, S; Leonard, CE1

Reviews

23 review(s) available for carbamates and nateglinide

ArticleYear
Modulation of insulin secretion in non-insulin-dependent diabetes mellitus by two novel oral hypoglycaemic agents, NN623 and A4166.
    Diabetic medicine : a journal of the British Diabetic Association, 1996, Volume: 13, Issue:9 Suppl 6

    Topics: Administration, Oral; Biological Availability; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Glyburide; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Intestinal Absorption; Molecular Structure; Nateglinide; Phenylalanine; Piperidines; Reference Values; Stereoisomerism

1996
New drugs for diabetes.
    The Netherlands journal of medicine, 1999, Volume: 55, Issue:5

    Topics: Carbamates; Chromans; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin Resistance; Metformin; Nateglinide; Phenylalanine; Piperidines; Thiazoles; Thiazolidinediones; Troglitazone

1999
Clinical efficacy of new thiazolidinediones and glinides in the treatment of type 2 diabetes mellitus.
    Experimental and clinical endocrinology & diabetes : official journal, German Society of Endocrinology [and] German Diabetes Association, 2000, Volume: 108, Issue:3

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Nateglinide; Phenylalanine; Pioglitazone; Piperidines; Rosiglitazone; Thiazoles; Thiazolidinediones

2000
Meglitinide analogues in the treatment of type 2 diabetes mellitus.
    Drugs & aging, 2000, Volume: 17, Issue:5

    Topics: Benzamides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Glyburide; Humans; Hypoglycemic Agents; Molecular Structure; Nateglinide; Phenylalanine; Piperidines

2000
Rapid acting insulinotropic agents: restoration of early insulin secretion as a physiologic approach to improve glucose control.
    Current pharmaceutical design, 2001, Volume: 7, Issue:14

    Topics: Animals; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Glucose; Guanidines; Humans; Hypoglycemic Agents; Indoles; Insulin; Insulin Secretion; Isoindoles; Nateglinide; Phenylalanine; Piperidines

2001
[New drugs].
    Revue medicale de Bruxelles, 2001, Volume: 22, Issue:4

    Topics: Amdinocillin; Carbamates; Clopidogrel; Cyclohexanes; Drug Interactions; Humans; Hypoglycemic Agents; Nateglinide; Patient Selection; Penicillins; Phenylalanine; Piperidines; Platelet Aggregation Inhibitors; Pneumococcal Vaccines; Raloxifene Hydrochloride; Safety; Selective Estrogen Receptor Modulators; Ticlopidine

2001
Insulinotropic meglitinide analogues.
    Lancet (London, England), 2001, Nov-17, Volume: 358, Issue:9294

    Topics: Adult; Animals; Benzamides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Nateglinide; Phenylalanine; Piperidines; Rats

2001
[Insulin analogs and new oral antidiabetic drugs].
    Duodecim; laaketieteellinen aikakauskirja, 1999, Volume: 115, Issue:20

    Topics: Administration, Oral; Carbamates; Cyclohexanes; Diabetes Mellitus; Dose-Response Relationship, Drug; Glucose; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Nateglinide; Phenylalanine; Piperidines; Receptors, Cytoplasmic and Nuclear; Thiazoles; Thiazolidinediones; Transcription Factors

1999
Current oral agents for type 2 diabetes. Many options, but which to choose when?
    Postgraduate medicine, 2002, Volume: 111, Issue:5

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Monitoring; Drug Therapy, Combination; Glycoside Hydrolases; Humans; Hypoglycemic Agents; Metformin; Nateglinide; Phenylalanine; Piperidines; Receptors, Cytoplasmic and Nuclear; Sulfonylurea Compounds; Transcription Factors

2002
Insulin secretagogues.
    Current medical research and opinion, 2002, Volume: 18 Suppl 1

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Glycated Hemoglobin; Humans; Hyperglycemia; Hyperinsulinism; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Nateglinide; Phenylalanine; Piperidines; Postprandial Period; Sulfonylurea Compounds; United Kingdom

2002
[Structures and mechanisms for non SU insulin secretagogues].
    Nihon rinsho. Japanese journal of clinical medicine, 2002, Volume: 60 Suppl 9

    Topics: Adenosine Triphosphate; Animals; ATP-Binding Cassette Transporters; Calcium Channels; Carbamates; Cyclohexanes; Exocytosis; Humans; Hypoglycemic Agents; Indoles; Insulin; Insulin Secretion; Islets of Langerhans; Isoindoles; Nateglinide; Organ Specificity; Phenylalanine; Piperidines; Potassium Channels; Potassium Channels, Inwardly Rectifying; Receptors, Drug; Sulfonylurea Receptors

2002
[symbol: see text] Nateglinide and [symbol: see text] repaglinide for type 2 diabetes?
    Drug and therapeutics bulletin, 2003, Volume: 41, Issue:7

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Double-Blind Method; Humans; Hypoglycemic Agents; Nateglinide; Phenylalanine; Piperidines; Randomized Controlled Trials as Topic; Treatment Outcome

2003
[Continuation 50. Type 2 diabetes: possibilities and limitations of pharmacological therapy].
    MMW Fortschritte der Medizin, 2003, Dec-18, Volume: 145, Issue:51-52

    Topics: 1-Deoxynojirimycin; Acarbose; Aged; Blood Glucose; Carbamates; Contraindications; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Enzyme Inhibitors; Fasting; Follow-Up Studies; Germany; Glucosamine; Glyburide; Glycated Hemoglobin; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemia; Hypoglycemic Agents; Imino Pyranoses; Insulin; Metformin; Middle Aged; Nateglinide; Obesity; Patient Compliance; Phenylalanine; Pioglitazone; Piperidines; Practice Guidelines as Topic; Risk Factors; Rosiglitazone; Sulfonylurea Compounds; Thiazolidinediones; Time Factors

2003
Pharmacology of the meglitinide analogs: new treatment options for type 2 diabetes mellitus.
    Treatments in endocrinology, 2003, Volume: 2, Issue:6

    Topics: Animals; Benzamides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Nateglinide; Phenylalanine; Piperidines

2003
Drug-drug and food-drug pharmacokinetic interactions with new insulinotropic agents repaglinide and nateglinide.
    Clinical pharmacokinetics, 2007, Volume: 46, Issue:2

    Topics: Anti-Bacterial Agents; Area Under Curve; Biological Availability; Biotransformation; Carbamates; Cyclohexanes; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Drug Administration Schedule; Drug Interactions; Enzyme Induction; Enzyme Inhibitors; Fasting; Food-Drug Interactions; Humans; Hypoglycemic Agents; Intestinal Absorption; Nateglinide; Phenylalanine; Piperidines; Postprandial Period

2007
Meglitinide analogues for type 2 diabetes mellitus.
    The Cochrane database of systematic reviews, 2007, Apr-18, Issue:2

    Topics: Benzamides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Metformin; Nateglinide; Phenylalanine; Piperidines; Randomized Controlled Trials as Topic

2007
Drugs for type 2 diabetes.
    Treatment guidelines from the Medical Letter, 2008, Volume: 6, Issue:71

    Topics: alpha-Galactosidase; Biguanides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Combinations; Drug Therapy, Combination; Humans; Hypoglycemic Agents; Insulin; Nateglinide; Phenylalanine; Piperidines; Pyrazines; Sitagliptin Phosphate; Sulfonylurea Compounds; Thiazolidinediones; Triazoles

2008
Nateglinide versus repaglinide for type 2 diabetes mellitus in China.
    Acta diabetologica, 2009, Volume: 46, Issue:4

    Topics: Carbamates; China; Cyclohexanes; Diabetes Mellitus, Type 2; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Male; Middle Aged; Nateglinide; Phenylalanine; Piperidines

2009
Advances in oral therapy for type 2 diabetes.
    Postgraduate medicine, 2000, May-15, Volume: 107, Issue:6 Suppl Ke

    Topics: Acarbose; Administration, Oral; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Combinations; Drug Therapy, Combination; Glycated Hemoglobin; Humans; Hypoglycemia; Hypoglycemic Agents; Insulin; Insulin Secretion; Insulin-Secreting Cells; Metformin; Nateglinide; Phenylalanine; Piperidines; Randomized Controlled Trials as Topic; Thiazolidinediones; United States; Weight Gain

2000
SLCO1B1 polymorphism and oral antidiabetic drugs.
    Basic & clinical pharmacology & toxicology, 2010, Volume: 107, Issue:4

    Topics: Administration, Oral; Alleles; Carbamates; Cyclohexanes; Genotype; Haplotypes; Humans; Hypoglycemic Agents; Liver-Specific Organic Anion Transporter 1; Nateglinide; Organic Anion Transporters; Phenylalanine; Pioglitazone; Piperidines; Polymorphism, Genetic; Rosiglitazone; Thiazolidinediones

2010
Variations in tissue selectivity amongst insulin secretagogues: a systematic review.
    Diabetes, obesity & metabolism, 2012, Volume: 14, Issue:2

    Topics: Animals; ATP-Binding Cassette Transporters; Carbamates; Cardiovascular Diseases; Cricetinae; Cyclohexanes; Diabetes Mellitus, Type 2; Gliclazide; Glipizide; Glyburide; Humans; Hypoglycemic Agents; Ischemic Preconditioning, Myocardial; Isoindoles; Mice; Muscle, Smooth, Vascular; Myocytes, Cardiac; Nateglinide; Phenylalanine; Piperidines; Potassium Channels, Inwardly Rectifying; Rats; Receptors, Drug; Risk Factors; Sulfonylurea Compounds; Sulfonylurea Receptors; Tolbutamide

2012
Pharmacogenomics of glinides.
    Pharmacogenomics, 2015, Volume: 16, Issue:1

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Inactivation, Metabolic; Insulin; Insulin Secretion; Insulin-Secreting Cells; Isoindoles; KATP Channels; Nateglinide; Pharmacogenetics; Phenylalanine; Piperidines

2015
Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes.
    European heart journal, 2015, Sep-07, Volume: 36, Issue:34

    Topics: Carbamates; Clinical Trials as Topic; Coronary Artery Disease; Cyclohexanes; Diabetes Mellitus, Type 2; Diabetic Angiopathies; Dipeptidyl-Peptidase IV Inhibitors; Glucagon-Like Peptide-1 Receptor; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemic Agents; Insulin; Metformin; Nateglinide; Phenylalanine; Piperidines; Sodium-Glucose Transport Proteins; Sulfonylurea Compounds; Thiazolidinediones; Treatment Outcome

2015

Trials

9 trial(s) available for carbamates and nateglinide

ArticleYear
Modulation of insulin secretion in non-insulin-dependent diabetes mellitus by two novel oral hypoglycaemic agents, NN623 and A4166.
    Diabetic medicine : a journal of the British Diabetic Association, 1996, Volume: 13, Issue:9 Suppl 6

    Topics: Administration, Oral; Biological Availability; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Glyburide; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Intestinal Absorption; Molecular Structure; Nateglinide; Phenylalanine; Piperidines; Reference Values; Stereoisomerism

1996
Mealtime glucose regulation with nateglinide in healthy volunteers: comparison with repaglinide and placebo.
    Diabetes care, 2001, Volume: 24, Issue:1

    Topics: Adolescent; Adult; Blood Glucose; Body Mass Index; Body Weight; Carbamates; Cross-Over Studies; Cyclohexanes; Female; Food; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Kinetics; Male; Middle Aged; Nateglinide; Phenylalanine; Piperidines; Placebos; Time Factors

2001
Efficacy and safety of combination therapy: repaglinide plus metformin versus nateglinide plus metformin.
    Diabetes care, 2003, Volume: 26, Issue:7

    Topics: Area Under Curve; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Insulin; Male; Metformin; Middle Aged; Nateglinide; Phenylalanine; Piperidines; Postprandial Period; Safety

2003
Repaglinide versus nateglinide monotherapy: a randomized, multicenter study.
    Diabetes care, 2004, Volume: 27, Issue:6

    Topics: Biomarkers; Body Mass Index; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Diet, Diabetic; Exercise; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Male; Middle Aged; Nateglinide; Phenylalanine; Piperidines; Time Factors

2004
[Comparison of efficacy between nateglinide and repaglinide in treating type 2 diabetes: a randomized controlled double-blind clinical trial].
    Sichuan da xue xue bao. Yi xue ban = Journal of Sichuan University. Medical science edition, 2005, Volume: 36, Issue:2

    Topics: Adult; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Double-Blind Method; Female; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Male; Middle Aged; Nateglinide; Phenylalanine; Piperidines

2005
Improvement of insulin sensitivity and beta-cell function by nateglinide and repaglinide in type 2 diabetic patients - a randomized controlled double-blind and double-dummy multicentre clinical trial.
    Diabetes, obesity & metabolism, 2007, Volume: 9, Issue:4

    Topics: Adult; Age of Onset; Aged; Area Under Curve; Asian People; Blood Glucose; Carbamates; China; Cyclohexanes; Diabetes Mellitus, Type 2; Double-Blind Method; Humans; Insulin; Insulin Secretion; Insulin-Secreting Cells; Middle Aged; Nateglinide; Phenylalanine; Piperidines

2007
Different effects of SLCO1B1 polymorphism on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide.
    Journal of clinical pharmacology, 2008, Volume: 48, Issue:3

    Topics: Analysis of Variance; Area Under Curve; Aryl Hydrocarbon Hydroxylases; Blood Glucose; Carbamates; Chromatography, Liquid; Cyclohexanes; Cytochrome P-450 CYP2C8; Cytochrome P-450 CYP2C9; Dose-Response Relationship, Drug; Genotype; Half-Life; Humans; Hypoglycemic Agents; Liver-Specific Organic Anion Transporter 1; Metabolic Clearance Rate; Molecular Structure; Nateglinide; Organic Anion Transporters; Pharmacogenetics; Phenylalanine; Piperidines; Polymorphism, Single Nucleotide; Tablets; Tandem Mass Spectrometry

2008
Effects of the SLCO1B1*1B haplotype on the pharmacokinetics and pharmacodynamics of repaglinide and nateglinide.
    Pharmacogenetics and genomics, 2008, Volume: 18, Issue:11

    Topics: Administration, Oral; Adult; Area Under Curve; Blood Glucose; Carbamates; Cyclohexanes; Female; Haplotypes; Humans; Hypoglycemic Agents; Liver-Specific Organic Anion Transporter 1; Male; Nateglinide; Organic Anion Transporters; Phenylalanine; Piperidines; Time Factors

2008
Nateglinide versus repaglinide for type 2 diabetes mellitus in China.
    Acta diabetologica, 2009, Volume: 46, Issue:4

    Topics: Carbamates; China; Cyclohexanes; Diabetes Mellitus, Type 2; Female; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Male; Middle Aged; Nateglinide; Phenylalanine; Piperidines

2009

Other Studies

41 other study(ies) available for carbamates and nateglinide

ArticleYear
Insulinotropic action of meglitinide analogs: concentration-response relationship and nutrient dependency.
    Diabetes research (Edinburgh, Scotland), 1994, Volume: 27, Issue:2

    Topics: Animals; Benzamides; Carbamates; Cyclohexanes; Female; Glucose; Hypoglycemic Agents; In Vitro Techniques; Indoles; Insulin; Insulin Secretion; Islets of Langerhans; Isoindoles; Molecular Structure; Nateglinide; Phenylalanine; Piperidines; Rats; Structure-Activity Relationship; Succinates

1994
Conformational analysis of non-sulfonylurea hypoglycemic agents of the meglitinide family.
    Biochemical pharmacology, 1995, Nov-27, Volume: 50, Issue:11

    Topics: Benzamides; Carbamates; Cyclohexanes; Drug Design; Glyburide; Hypoglycemic Agents; Indoles; Isoindoles; Molecular Conformation; Nateglinide; Phenylalanine; Piperidines; Stereoisomerism; Structure-Activity Relationship; Sulfonylurea Compounds

1995
Insulinotropic action of meglitinide analogues: modulation by an activator of ATP-sensitive K+ channels and high extracellular K+ concentrations.
    Pharmacological research, 1995, Volume: 32, Issue:3

    Topics: Animals; Benzamides; Carbamates; Cyclohexanes; Female; Hypoglycemic Agents; Indoles; Insulin; Insulin Secretion; Islets of Langerhans; Isoindoles; Nateglinide; Phenylalanine; Piperidines; Potassium; Rats

1995
Effects of the methyl esters of pyruvate, succinate and glutamate on the secretory response to meglitinide analogues in rat pancreatic islets.
    Pharmacological research, 1996, Volume: 33, Issue:3

    Topics: Animals; Carbamates; Cells, Cultured; Cyclohexanes; Glucose; Glutamates; Hypoglycemic Agents; Indoles; Insulin; Insulin Secretion; Islets of Langerhans; Isoindoles; Nateglinide; Phenylalanine; Piperidines; Pyruvates; Rats; Succinates

1996
Stimulation of insulin and somatostatin release by two meglitinide analogs.
    Endocrine, 1997, Volume: 7, Issue:3

    Topics: Animals; Benzamides; Blood Glucose; Carbamates; Cyclohexanes; Female; Glucagon; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Nateglinide; Perfusion; Phenylalanine; Piperidines; Rats; Rats, Wistar; Somatostatin

1997
Tissue selectivity of antidiabetic agent nateglinide: study on cardiovascular and beta-cell K(ATP) channels.
    The Journal of pharmacology and experimental therapeutics, 1999, Volume: 291, Issue:3

    Topics: Animals; Aorta, Thoracic; Carbamates; Cardiovascular System; Coronary Vessels; Cyclohexanes; Glyburide; Heart; Hypoglycemic Agents; Islets of Langerhans; Male; Muscle, Smooth, Vascular; Nateglinide; Phenylalanine; Piperidines; Potassium Channels; Potassium Channels, Inwardly Rectifying; Rats; Rats, Sprague-Dawley; Swine

1999
Selectivity of prandial glucose regulators: nateglinide, but not repaglinide, accelerates exocytosis in rat pancreatic A-cells.
    European journal of pharmacology, 1999, Dec-10, Volume: 386, Issue:1

    Topics: Animals; ATP-Binding Cassette Transporters; Calcium; Carbamates; Cyclohexanes; Eating; Electrophysiology; Exocytosis; Glucagon; Glucose; Hypoglycemic Agents; In Vitro Techniques; Islets of Langerhans; KATP Channels; Kinetics; Male; Nateglinide; Patch-Clamp Techniques; Phenylalanine; Piperidines; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Rats; Rats, Inbred Lew; Stimulation, Chemical

1999
Pancreatic beta-cell K(ATP) channel activity and membrane-binding studies with nateglinide: A comparison with sulfonylureas and repaglinide.
    The Journal of pharmacology and experimental therapeutics, 2000, Volume: 293, Issue:2

    Topics: Animals; ATP-Binding Cassette Transporters; Binding, Competitive; Carbamates; Cell Membrane; Cell Separation; Cells, Cultured; Cyclohexanes; Glucose; Glyburide; Glycosyltransferases; Humans; Hypoglycemia; Hypoglycemic Agents; In Vitro Techniques; Insulin; Islets of Langerhans; KATP Channels; Kinetics; Male; Membrane Proteins; Nateglinide; Patch-Clamp Techniques; Phenylalanine; Piperidines; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Inwardly Rectifying; Rats; Rats, Sprague-Dawley; Repressor Proteins; Saccharomyces cerevisiae Proteins; Sulfonylurea Compounds

2000
Differential effects of short and long duration insulinotropic agents on meal-related glucose excursions.
    Diabetes, obesity & metabolism, 2001, Volume: 3, Issue:2

    Topics: Animals; Blood Glucose; Carbamates; Cyclohexanes; Food; Glipizide; Glucagon; Insulin; Insulin Secretion; Male; Nateglinide; Phenylalanine; Piperidines; Rats; Rats, Sprague-Dawley

2001
Effect of insulinotropic agent nateglinide on Kv and Ca(2+) channels in pancreatic beta-cell.
    European journal of pharmacology, 2001, Sep-14, Volume: 427, Issue:2

    Topics: Animals; Calcium Channels; Carbamates; Cyclohexanes; Dose-Response Relationship, Drug; Electric Stimulation; Glyburide; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Male; Membrane Potentials; Nateglinide; Patch-Clamp Techniques; Phenylalanine; Piperidines; Potassium Channels; Rats; Rats, Sprague-Dawley

2001
Type 2 diabetes management.
    British journal of community nursing, 2002, Volume: 7, Issue:1

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Humans; Hypoglycemic Agents; Metformin; Nateglinide; Phenylalanine; Piperidines

2002
Interaction of nateglinide with K(ATP) channel in beta-cells underlies its unique insulinotropic action.
    European journal of pharmacology, 2002, May-03, Volume: 442, Issue:1-2

    Topics: Adenosine Triphosphate; Animals; Carbamates; Cyclohexanes; Dose-Response Relationship, Drug; Glucose; Glyburide; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Kinetics; Male; Membrane Potentials; Nateglinide; Phenylalanine; Piperidines; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Sprague-Dawley; Sulfonylurea Compounds; Time Factors

2002
Nateglinide, but not repaglinide, stimulates growth hormone release in rat pituitary cells by inhibition of K channels and stimulation of cyclic AMP-dependent exocytosis.
    European journal of endocrinology, 2002, Volume: 147, Issue:1

    Topics: Animals; Calcium; Carbamates; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Cyclohexanes; Delayed Rectifier Potassium Channels; Exocytosis; Growth Hormone; Growth Hormone-Releasing Hormone; Hypoglycemic Agents; Male; Membrane Potentials; Nateglinide; Patch-Clamp Techniques; Phenylalanine; Piperidines; Pituitary Gland; Potassium; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Rats; Rats, Sprague-Dawley

2002
Differential interactions of nateglinide and repaglinide on the human beta-cell sulphonylurea receptor 1.
    Diabetes, 2002, Volume: 51, Issue:9

    Topics: ATP-Binding Cassette Transporters; Binding, Competitive; Carbamates; Cell Line; Cyclohexanes; Drug Interactions; Electrophysiology; Humans; Islets of Langerhans; Nateglinide; Phenylalanine; Piperidines; Potassium Channels; Potassium Channels, Inwardly Rectifying; Receptors, Drug; Sulfonylurea Receptors; Tolbutamide

2002
Glucose-dependent and glucose-sensitizing insulinotropic effect of nateglinide: comparison to sulfonylureas and repaglinide.
    International journal of experimental diabetes research, 2001, Volume: 2, Issue:1

    Topics: Animals; Carbamates; Cyclohexanes; Glucose; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Kinetics; Male; Nateglinide; Phenylalanine; Piperidines; Rats; Rats, Sprague-Dawley; Sulfonylurea Compounds

2001
Effectiveness of nateglinide on in vitro insulin secretion from rat pancreatic islets desensitized to sulfonylureas.
    International journal of experimental diabetes research, 2001, Volume: 2, Issue:1

    Topics: Animals; Carbamates; Cyclohexanes; Hypoglycemic Agents; Insulin; Insulin Secretion; Islets of Langerhans; Male; Nateglinide; Phenylalanine; Piperidines; Rats; Rats, Sprague-Dawley; Sulfonylurea Compounds

2001
[Glinides and glitazones in diabetes treatment. Are they really effective?].
    MMW Fortschritte der Medizin, 2002, May-02, Volume: 144, Issue:18

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Humans; Hypoglycemic Agents; Insulin; Nateglinide; Phenylalanine; Pioglitazone; Piperidines; Rosiglitazone; Thiazoles; Thiazolidinediones; Treatment Outcome

2002
Pharmacologic restoration of the early insulin response in pre-diabetic monkeys controls mealtime glucose excursions without peripheral hyperinsulinaemia.
    Diabetologia, 2003, Volume: 46 Suppl 1

    Topics: Animals; Blood Glucose; Carbamates; Cyclohexanes; Fatty Acids, Nonesterified; Food; Glucagon; Hypoglycemic Agents; Insulin; Insulin Secretion; Kinetics; Macaca fascicularis; Male; Nateglinide; Phenylalanine; Piperidines

2003
[Differences between oral antidiabetics].
    Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke, 2003, Mar-20, Volume: 123, Issue:6

    Topics: Administration, Oral; Carbamates; Cyclohexanes; Diabetes Mellitus; Glipizide; Humans; Hypoglycemic Agents; Insulin; Insulin Secretion; Nateglinide; Phenylalanine; Piperidines; Sulfonylurea Compounds

2003
Repaglinide at a cellular level.
    Diabetes, nutrition & metabolism, 2002, Volume: 15, Issue:6 Suppl

    Topics: Animals; Carbamates; Cyclohexanes; Electrophysiology; Exocytosis; Hypoglycemic Agents; Islets of Langerhans; Membrane Potentials; Nateglinide; Phenylalanine; Piperidines; Postprandial Period; Potassium Channels; Rats

2002
Glimepiride and serum adiponectin level in type 2 diabetic subjects: response to Nagasaka et al.
    Diabetes care, 2003, Volume: 26, Issue:12

    Topics: Adiponectin; Blood Glucose; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Humans; Hypoglycemic Agents; Intercellular Signaling Peptides and Proteins; Nateglinide; Phenylalanine; Piperidines; Proteins; Sulfonylurea Compounds

2003
Comparison of repaglinide and nateglinide in combination with metformin: response to Raskin et al.
    Diabetes care, 2003, Volume: 26, Issue:12

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Glycated Hemoglobin; Humans; Hypoglycemic Agents; Metformin; Nateglinide; Phenylalanine; Piperidines

2003
Comparing the long-term cost-effectiveness of repaglinide plus metformin versus nateglinide plus metformin in type 2 diabetes patients with inadequate glycaemic control: an application of the CORE Diabetes Model in type 2 diabetes.
    Current medical research and opinion, 2004, Volume: 20 Suppl 1

    Topics: Carbamates; Cohort Studies; Computer Simulation; Cost of Illness; Cost-Benefit Analysis; Cyclohexanes; Decision Support Systems, Clinical; Diabetes Complications; Diabetes Mellitus, Type 2; Drug Therapy, Combination; Female; Glycated Hemoglobin; Health Care Costs; Humans; Male; Metformin; Middle Aged; Models, Econometric; Nateglinide; Outcome Assessment, Health Care; Phenylalanine; Piperidines; Quality-Adjusted Life Years

2004
Sulfonylurea induced beta-cell apoptosis in cultured human islets.
    The Journal of clinical endocrinology and metabolism, 2005, Volume: 90, Issue:1

    Topics: Adult; Aged; Apoptosis; Calcium; Carbamates; Cells, Cultured; Cyclohexanes; Dose-Response Relationship, Drug; Glyburide; Humans; Hypoglycemic Agents; Insulin; Islets of Langerhans; Middle Aged; Nateglinide; Phenylalanine; Piperidines

2005
Treating type 2 diabetes. When diet and exercise aren't enough, a broad range of medications can help control our blood sugar.
    Health news (Waltham, Mass.), 2004, Volume: 10, Issue:8

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Administration Schedule; Eating; Humans; Hypoglycemic Agents; Nateglinide; Phenylalanine; Piperidines

2004
[Synthesis and insulinotropic activity of 2-benzylidenesuccinic acid derivatives].
    Yao xue xue bao = Acta pharmaceutica Sinica, 2005, Volume: 40, Issue:12

    Topics: Animals; Benzylidene Compounds; Blood Glucose; Carbamates; Cyclohexanes; Hypoglycemic Agents; Indoles; Isoindoles; Mice; Molecular Structure; Nateglinide; Phenylalanine; Piperidines; Structure-Activity Relationship; Succinates

2005
Glibenclamide attenuates the antiarrhythmic effect of endotoxin with a mechanism not involving K(ATP) channels.
    Vascular pharmacology, 2007, Volume: 46, Issue:2

    Topics: Action Potentials; Adenosine Triphosphate; Animals; Arrhythmias, Cardiac; Blood Pressure; Carbamates; Cyclohexanes; Disease Models, Animal; Drug Interactions; Endotoxemia; Glyburide; Heart Atria; Heart Conduction System; Lipopolysaccharides; Male; Myocardial Ischemia; Nateglinide; Phenylalanine; Piperidines; Potassium Channel Blockers; Potassium Channels; Rats; Rats, Sprague-Dawley; Tachycardia, Ventricular; Tetraethylammonium; Time Factors; Ventricular Fibrillation; Ventricular Premature Complexes

2007
Testing the bipartite model of the sulfonylurea receptor binding site: binding of A-, B-, and A + B-site ligands.
    The Journal of pharmacology and experimental therapeutics, 2007, Volume: 322, Issue:2

    Topics: Amino Acid Substitution; Animals; ATP-Binding Cassette Transporters; Binding Sites; Binding, Competitive; Carbamates; Cell Line; Cyclohexanes; Dose-Response Relationship, Drug; Glyburide; Hypoglycemic Agents; KATP Channels; Ligands; Mice; Molecular Structure; Nateglinide; Phenylalanine; Piperidines; Potassium Channels; Potassium Channels, Inwardly Rectifying; Protein Binding; Radioligand Assay; Rats; Receptors, Drug; Sulfonylurea Compounds; Sulfonylurea Receptors; Transfection

2007
Postprandial hyperglycemia: are all sulfonylureas created equal?
    The American journal of cardiology, 2008, Feb-15, Volume: 101, Issue:4

    Topics: Carbamates; Cyclohexanes; Glipizide; Humans; Hyperglycemia; Hyperlipidemias; Hypoglycemic Agents; Nateglinide; Phenylalanine; Piperidines; Postprandial Period; Sulfonylurea Compounds

2008
Hypoglycaemia with oral antidiabetic drugs: results from prescription-event monitoring cohorts of rosiglitazone, pioglitazone, nateglinide and repaglinide.
    Drug safety, 2009, Volume: 32, Issue:5

    Topics: Administration, Oral; Adult; Adverse Drug Reaction Reporting Systems; Carbamates; Cohort Studies; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Monitoring; Drug Prescriptions; Female; Humans; Hypoglycemia; Hypoglycemic Agents; Incidence; Male; Middle Aged; Nateglinide; Phenylalanine; Pioglitazone; Piperidines; Rosiglitazone; Sex Factors; Thiazolidinediones

2009
Glinide, but not sulfonylurea, can evoke insulin exocytosis by repetitive stimulation: imaging analysis of insulin exocytosis by secretagogue-induced repetitive stimulations.
    Experimental diabetes research, 2009, Volume: 2009

    Topics: Animals; Calcium; Carbamates; Cell Fusion; Cells, Cultured; Cyclohexanes; Exocytosis; Glucose; Hypoglycemic Agents; Insulin; Insulin Secretion; Insulin-Secreting Cells; Mice; Mice, Inbred C57BL; Microscopy, Fluorescence; Nateglinide; Phenylalanine; Piperidines; Sulfonylurea Compounds

2009
Diabetes under control: Understanding oral antidiabetic agents.
    The American journal of nursing, 2010, Volume: 110, Issue:2

    Topics: Administration, Oral; Biguanides; Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Drug Combinations; Drug Therapy, Combination; Glycoside Hydrolase Inhibitors; Humans; Hypoglycemic Agents; Nateglinide; Phenylalanine; Piperidines; Sulfonylurea Compounds

2010
Hypersensitivity to repaglinide.
    Journal of investigational allergology & clinical immunology, 2011, Volume: 21, Issue:3

    Topics: Carbamates; Cyclohexanes; Diabetes Mellitus, Type 2; Drug Hypersensitivity; Erythema; Exanthema; Humans; Hypoglycemic Agents; Male; Middle Aged; Nateglinide; Patch Tests; Phenylalanine; Piperidines

2011
From evidence assessments to coverage decisions?: the case example of glinides in Germany.
    Health policy (Amsterdam, Netherlands), 2012, Volume: 104, Issue:1

    Topics: Carbamates; Cost Control; Cost-Benefit Analysis; Costs and Cost Analysis; Cyclohexanes; Diabetes Mellitus; Eligibility Determination; Evidence-Based Medicine; Germany; Health Care Reform; Health Policy; Humans; Hypoglycemic Agents; Insurance Coverage; Nateglinide; National Health Programs; Phenylalanine; Piperidines; Prescription Drugs; Reimbursement Mechanisms; Technology Assessment, Biomedical

2012
Effects of nateglinide and repaglinide administered intracerebroventricularly on the CA3 hippocampal neuronal cell death and hyperglycemia induced by kainic acid in mice.
    Brain research bulletin, 2014, Volume: 104

    Topics: Animals; Blood Glucose; CA3 Region, Hippocampal; Carbamates; Cell Death; Corticosterone; Cyclohexanes; Excitatory Amino Acid Agonists; Hypoglycemic Agents; Infusions, Intraventricular; Insulin; Kainic Acid; Male; Mice; Mice, Inbred ICR; Nateglinide; Neurons; Phenylalanine; Piperidines

2014
Biomedical Informatics Approaches to Identifying Drug-Drug Interactions: Application to Insulin Secretagogues.
    Epidemiology (Cambridge, Mass.), 2017, Volume: 28, Issue:3

    Topics: Area Under Curve; Carbamates; Cyclohexanes; Databases, Factual; Diabetes Mellitus, Type 2; Drug Interactions; Glipizide; Glyburide; Humans; Hypoglycemia; Hypoglycemic Agents; Medical Informatics; Nateglinide; Pharmacoepidemiology; Phenylalanine; Piperidines; Sulfonylurea Compounds

2017
Strategies to improve the prediction accuracy of hepatic intrinsic clearance of three antidiabetic drugs: Application of the extended clearance concept and consideration of the effect of albumin on CYP2C metabolism and OATP1B-mediated hepatic uptake.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2018, Dec-01, Volume: 125

    Topics: Albumins; Carbamates; Cytochrome P-450 Enzyme System; Glyburide; HEK293 Cells; Hepatocytes; Humans; Hypoglycemic Agents; Liver; Liver-Specific Organic Anion Transporter 1; Metabolic Clearance Rate; Microsomes, Liver; Models, Biological; Nateglinide; Piperidines; Solute Carrier Organic Anion Transporter Family Member 1B3

2018
Risk of Hypoglycemia and Concomitant Use of Repaglinide and Clopidogrel: A Population-Based Nested Case-Control Study.
    Clinical pharmacology and therapeutics, 2019, Volume: 106, Issue:6

    Topics: Aged; Aspirin; Carbamates; Case-Control Studies; Clopidogrel; Drug Interactions; Female; Humans; Hypoglycemia; Hypoglycemic Agents; Male; Middle Aged; Nateglinide; Piperidines; Platelet Aggregation Inhibitors

2019
High-Performance affinity chromatographic studies of repaglinide and nateglinide interactions with normal and glyoxal- or methylglyoxal-modified human albumin serum.
    Journal of pharmaceutical and biomedical analysis, 2021, Jul-15, Volume: 201

    Topics: Carbamates; Chromatography, Affinity; Glycosylation; Glyoxal; Humans; Nateglinide; Piperidines; Protein Binding; Pyruvaldehyde; Serum Albumin; Serum Albumin, Human

2021
Risk of Death and Heart Failure among Patients with Type 2 Diabetes Treated by Metformin and Nonmetformin Monotherapy: A Real-World Study.
    Journal of diabetes research, 2021, Volume: 2021

    Topics: Aged; Benzamides; Carbamates; Cardiovascular Diseases; Cause of Death; Diabetes Mellitus, Type 2; Dipeptidyl-Peptidase IV Inhibitors; Female; Glycoside Hydrolase Inhibitors; Heart Failure; Hospitalization; Humans; Hypoglycemic Agents; Male; Metformin; Middle Aged; Mortality; Nateglinide; Piperidines; Proportional Hazards Models; Retrospective Studies; Sulfonylurea Compounds; Thiazolidinediones

2021
Angiotensin-Converting Enzyme Inhibitors Used Concomitantly with Insulin Secretagogues and the Risk of Serious Hypoglycemia.
    Clinical pharmacology and therapeutics, 2022, Volume: 111, Issue:1

    Topics: Administrative Claims, Healthcare; Aged; Aged, 80 and over; Angiotensin-Converting Enzyme Inhibitors; Carbamates; Databases, Factual; Diabetes Mellitus, Type 2; Drug Interactions; Female; Glipizide; Glyburide; Humans; Hypoglycemia; Hypoglycemic Agents; Insulin; Male; Medicaid; Metformin; Middle Aged; Nateglinide; Pharmacoepidemiology; Piperidines; Secretagogues; Sulfonylurea Compounds; United States

2022