captopril has been researched along with 3,4-dihydroxyphenylacetic acid in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (50.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Correa, JG; Stoppani, AO | 1 |
2 other study(ies) available for captopril and 3,4-dihydroxyphenylacetic acid
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Catecholamines enhance dihydrolipoamide dehydrogenase inactivation by the copper Fenton system. Enzyme protection by copper chelators.
Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Binding Sites; Captopril; Catecholamines; Catechols; Cattle; Chelating Agents; Copper; Cysteine; Dihydrolipoamide Dehydrogenase; Dopamine; Epinephrine; Hydrogen Peroxide; Hydroxyl Radical; Iron; Kinetics; Mammals; Norepinephrine; Oxidation-Reduction; Oxidopamine; Penicillamine | 1996 |