capsaicin has been researched along with valsartan in 6 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (16.67) | 29.6817 |
2010's | 5 (83.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ | 1 |
Harada, N; Okajima, K; Shimozawa, N | 1 |
Harada, M; Otani, M; Otsuki, M; Wei, L; Yamamoto, M | 1 |
6 other study(ies) available for capsaicin and valsartan
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship | 2012 |
AT(1) receptor blockers increase insulin-like growth factor-I production by stimulating sensory neurons in spontaneously hypertensive rats.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Benzimidazoles; Benzoates; Blood Pressure; Calcitonin Gene-Related Peptide; Capsaicin; Cells, Cultured; Ganglia, Spinal; Hypertension; Imidazoles; Insulin-Like Growth Factor I; Kidney; Losartan; Male; Myocardium; Nifedipine; Peptidyl-Dipeptidase A; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Angiotensin, Type 1; RNA, Messenger; Sensory Receptor Cells; Telmisartan; Tetrazoles; Valine; Valsartan; Vasodilator Agents | 2009 |
Valsartan, a specific angiotensin II receptor blocker, inhibits pancreatic fluid secretion via vagal afferent pathway in conscious rats.
Topics: Afferent Pathways; Amylases; Angiotensin II Type 1 Receptor Blockers; Animals; Atropine; Bicarbonates; Capsaicin; Cholecystokinin; Male; Muscarinic Antagonists; Pancreas; Pancreatic Juice; Proteins; Rats; Rats, Wistar; Renin-Angiotensin System; Secretin; Sensory System Agents; Tetrazoles; Vagus Nerve; Valine; Valsartan | 2012 |