capsaicin and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid

capsaicin has been researched along with 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's3 (100.00)18.2507
2000's0 (0.00)29.6817
2010's0 (0.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Larson, AA; Sun, X3

Other Studies

3 other study(ies) available for capsaicin and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid

ArticleYear
The amino-terminus of substance P mimics and MK-801 attenuates the effects of capsaicin on nociception and kainic acid-induced behavior in the mouse.
    Regulatory peptides, 1993, Jul-02, Volume: 46, Issue:1-2

    Topics: Analysis of Variance; Animals; Capsaicin; Dizocilpine Maleate; Haloperidol; Kainic Acid; Male; Mice; Pain; Peptide Fragments; Piperazines; Receptors, N-Methyl-D-Aspartate; Substance P

1993
MK-801 inhibits the effects of capsaicin in the adult mouse by an action involving phencyclidine (PCP) sites not linked to NMDA activity.
    Neuroreport, 1993, Sep-03, Volume: 4, Issue:10

    Topics: Animals; Behavior, Animal; Capsaicin; Dizocilpine Maleate; Haloperidol; Injections, Spinal; Kainic Acid; Male; Mice; Pain Measurement; Pain Threshold; Peptide Fragments; Piperazines; Receptors, N-Methyl-D-Aspartate; Receptors, Phencyclidine; Substance P

1993
MK-801 and phencyclidine act at phencyclidine sites that are not linked to N-methyl-D-aspartate activity to inhibit behavioral sensitization to kainate.
    Neuroscience, 1993, Volume: 54, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Animals; Behavior, Animal; Capsaicin; Dizocilpine Maleate; Haloperidol; Kainic Acid; Male; Mice; N-Methylaspartate; Nociceptors; Phencyclidine; Piperazines; Receptors, N-Methyl-D-Aspartate; Receptors, Phencyclidine; Receptors, sigma; Spinal Cord

1993