cannabinol and cp-55,940

cannabinol has been researched along with cp-55,940 in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's2 (33.33)18.2507
2000's3 (50.00)29.6817
2010's0 (0.00)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Blond, O; Briley, EM; Felder, CC; Joyce, KE; Lai, Y; Ma, AL; Mackie, K; Mansouri, J; Mitchell, RL1
Abood, ME; Compton, DR; Martin, BR; Showalter, VM1
Bianchi, A; Cruciani, G; Fichera, M; Musumarra, G1
Fowler, CJ; Lambert, DM1
Gynther, J; Järvinen, T; Lahtela-Kakkonen, M; Laitinen, JT; Nevalainen, T; Parkkari, T; Poso, A; Salo, OM; Savinainen, JR1
Sampson, PB1

Reviews

1 review(s) available for cannabinol and cp-55,940

ArticleYear
The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications.
    Journal of medicinal chemistry, 2005, Aug-11, Volume: 48, Issue:16

    Topics: Amides; Amidohydrolases; Amines; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Drug Design; Endocannabinoids; Esters; Ethers; Glycerides; Humans; Ligands; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Receptors, Cannabinoid

2005

Other Studies

5 other study(ies) available for cannabinol and cp-55,940

ArticleYear
Comparison of the pharmacology and signal transduction of the human cannabinoid CB1 and CB2 receptors.
    Molecular pharmacology, 1995, Volume: 48, Issue:3

    Topics: Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Amidohydrolases; Animals; Arachidonic Acids; Base Sequence; Binding, Competitive; Calcium; Calcium Channel Blockers; Cannabinoids; CHO Cells; Cricetinae; Endocannabinoids; Enzyme Activation; Humans; Intracellular Fluid; Ion Channels; Kinetics; Mice; Molecular Sequence Data; Phospholipases; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction; Transfection

1995
Evaluation of binding in a transfected cell line expressing a peripheral cannabinoid receptor (CB2): identification of cannabinoid receptor subtype selective ligands.
    The Journal of pharmacology and experimental therapeutics, 1996, Volume: 278, Issue:3

    Topics: Animals; Binding, Competitive; Brain; Cannabinoids; Cell Membrane; Cells, Cultured; CHO Cells; Cricetinae; Cyclohexanols; Guanine Nucleotides; Humans; Ligands; Rats; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Recombinant Proteins; Sodium; Structure-Activity Relationship; Transfection

1996
A 3D-QSAR study on the structural requirements for binding to CB(1) and CB(2) cannabinoid receptors.
    Journal of medicinal chemistry, 2000, Jun-15, Volume: 43, Issue:12

    Topics: Arachidonic Acids; Cannabinoids; Drug Design; Endocannabinoids; Indoles; Ligands; Models, Biological; Models, Molecular; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Structure-Activity Relationship

2000
3D-QSAR studies on cannabinoid CB1 receptor agonists: G-protein activation as biological data.
    Journal of medicinal chemistry, 2006, Jan-26, Volume: 49, Issue:2

    Topics: Animals; Cannabinoid Receptor Modulators; Cerebellum; GTP-Binding Proteins; In Vitro Techniques; Ligands; Male; Models, Molecular; Molecular Structure; Quantitative Structure-Activity Relationship; Radioligand Assay; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1

2006
Phytocannabinoid Pharmacology: Medicinal Properties of
    Journal of natural products, 2021, 01-22, Volume: 84, Issue:1

    Topics: Cannabidiol; Cannabinoids; Cannabis; Dronabinol; Endocannabinoids; Humans; Phytochemicals; Signal Transduction

2021