cannabidiol and perfluorooctane-sulfonic-acid

cannabidiol has been researched along with perfluorooctane-sulfonic-acid* in 2 studies

Other Studies

2 other study(ies) available for cannabidiol and perfluorooctane-sulfonic-acid

ArticleYear
Cannabidiol Alleviates Perfluorooctanesulfonic Acid-Induced Cardiomyocyte Apoptosis by Maintaining Mitochondrial Dynamic Balance and Energy Metabolic Homeostasis.
    Journal of agricultural and food chemistry, 2023, Apr-12, Volume: 71, Issue:14

    Perfluorooctanesulfonic acid (PFOS), a fluorine-containing organic compound, can be widely detected in the environment and living organisms. Accumulating evidence has shown that PFOS breaks through different biological barriers resulting in cardiac toxicity, but the underlying molecular mechanisms remain unclear. Cannabidiol (CBD) is a nonpsychoactive cannabinoid without potential adverse cardiotoxicity and has antioxidant and anti-inflammatory properties that reduce multiorgan damage and dysfunction. For these reasons, the aim of this study was to research how PFOS caused heart injury and whether CBD could attenuate PFOS-induced heart injury. Mice were fed PFOS (5 mg/kg) and/or CBD (10 mg/kg) in vivo. In vitro, H9C2 cells were intervened with PFOS (200 μM) and/or CBD (10 μM). After PFOS exposure, oxidative stress levels and the mRNA and protein expression of apoptosis-related markers increased distinctly, accompanied by mitochondrial dynamic imbalance and energy metabolism disorders in mouse heart and H9C2 cells. Moreover, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, acridine orange/ethidium bromide staining and Hoechst 33258 staining signaled that the number of apoptotic cells increased after exposure to PFOS. Noteworthy, CBD simultaneous treatment alleviated a series of damages caused by PFOS-mediated oxidative stress. Our results demonstrated that CBD could alleviate PFOS-induced mitochondrial dynamics imbalance and energy metabolism disorder causing cardiomyocyte apoptosis by improving the antioxidant capacity, suggesting that CBD may represent a novel cardioprotective strategy against PFOS-induced cardiotoxicity. Our findings facilitate the understanding of the cardiotoxic effects of PFOS and the important role of CBD in protecting cardiac health.

    Topics: Animals; Antioxidants; Apoptosis; Cannabidiol; Cardiotoxicity; Heart Injuries; Homeostasis; Mice; Mitochondrial Dynamics; Myocytes, Cardiac

2023
Cannabidiol alleviates perfluorooctane sulfonate-induced macrophage extracellular trap mediate inflammation and fibrosis in mice liver.
    Ecotoxicology and environmental safety, 2023, Sep-15, Volume: 263

    As a new type of persistent organic pollutant, perfluorooctane sulphonate (PFOS) has received extensive attention worldwide. Cannabidiol (CBD) is a non-psychoactive natural cannabinoid extract that has been proved to have antioxidation, regulation of inflammation and other functions. However, the effects of PFOS on liver injury and whether CBD can alleviate PFOS-induced liver injury are still unclear. Therefore, in this study, we used CBD (10 mg/kg) and/or PFOS (5 mg/kg) to intraperitoneally inject mice for 30 days. We found that PFOS exposure led to inflammatory infiltration in the liver of mice, increased the formation of macrophage extracellular trap (MET), and promoted fibrosis. In vitro, we established a coculture system of RAW264.7, AML12 and LX-2 cells, and treated them with CBD (10 μM) and/or PFOS (200 μM). The results showed that PFOS could also induce the expression of MET, inflammation and fibrosis marker genes in vitro. Coiled-coil domain containing protein 25 (CCD25), as a MET-DNA sensor, was used to investigate its ability to regulate inflammation and fibrosis, we knocked down CCDC25 and its downstream proteins (integrin-linked kinase, ILK) by siRNA technology, and used QNZ to inhibit NF-κB pathway. The results showed that the knockdown of CCDC25 and ILK and the inhibition of NF-κB pathway could inhibit MET-induced inflammation and fibrosis marker gene expression. In summary, we found that PFOS-induced MET can promote inflammation and fibrosis through the CCDC25-ILK-NF-κB signaling axis, while the treatment of CBD showed a protective effect, and it is proved by Macromolecular docking that this protective effect is achieved by combining CBD with peptidylarginine deiminase 4 (PAD4) to alleviate the release of MET. Therefore, regulating the formation of MET and the CCDC25-ILK-NF-κB signaling axis is an innovative treatment option that can effectively reduce hepatotoxicity. Our study reveals the mechanism of PFOS-induced hepatotoxicity and provides promising insights into the protective role of CBD in this process.

    Topics: Animals; Cannabidiol; Chemical and Drug Induced Liver Injury; Extracellular Traps; Fibrosis; Inflammation; Macrophages; Mice; NF-kappa B

2023