cannabidiol has been researched along with glyceryl-2-arachidonate* in 7 studies
1 review(s) available for cannabidiol and glyceryl-2-arachidonate
Article | Year |
---|---|
The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications.
Topics: Amides; Amidohydrolases; Amines; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Drug Design; Endocannabinoids; Esters; Ethers; Glycerides; Humans; Ligands; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Receptors, Cannabinoid | 2005 |
6 other study(ies) available for cannabidiol and glyceryl-2-arachidonate
Article | Year |
---|---|
Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult. Topics: Amides; Animals; Arachidonic Acids; Cannabidiol; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glycerides; Hippocampus; Interpersonal Relations; Male; Methylazoxymethanol Acetate; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Puberty; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Recognition, Psychology; RNA, Messenger; Schizophrenia | 2019 |
Do cannabinoids exhibit a tyramine-like effect?
The major constituent of the cannabis plant, Δ(9)-tetrahydrocannabinol, has stimulatory and depressant effects on cardiovascular functions. There is evidence from an in vivo study on the urethane-anaesthetized rat that part of the stimulatory effects is related to a tyramine-like activity. In the present study, we examined whether Δ(9)-tetrahydrocannabinol induces carrier-mediated noradrenaline release in vitro. The study was extended to another phytocannabinoid, cannabidiol, to the synthetic cannabinoids CP 55,940 and WIN 55,212-2 and to the endocannabinoids anandamide and 2-arachidonoyl glycerol. Tissue pieces of the renal cortex from the mouse and the rat were preincubated with (3)H-noradrenaline and superfused. The effect of the cannabinoids on basal (3)H-noradrenaline release was studied. Tyramine served as a positive control. In the mouse kidney, basal (3)H-noradrenaline release was increased by tyramine 0.1, 1 and 10 μM by 39, 91 and 212 %, respectively, and, in the rat kidney, (3)H-noradrenaline release was increased by tyramine 10 μM by 158 %. All effects were abolished by desipramine 1 μM, an inhibitor of the neuronal noradrenaline transporter. The cannabinoids at 0.1, 1 and 10 μM (CP 55,940 at 0.1, 1 and 3.2 μM) did not affect (3)H-noradrenaline release in the mouse kidney. The highest concentration of the cannabinoids (10 μM and in the case of CP 55,940 3.2 μM) also failed to affect (3)H-noradrenaline release in the rat kidney. In conclusion, the cannabinoids Δ(9)-tetrahydrocannabinol, cannabidiol, CP 55,940, WIN 55,212-2, anandamide and 2-arachidonoyl glycerol do not possess a tyramine-like effect on noradrenaline release. Topics: Adrenergic Uptake Inhibitors; Animals; Arachidonic Acids; Benzoxazines; Cannabidiol; Cannabinoids; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Glycerides; Kidney Cortex; Male; Mice; Mice, Inbred C57BL; Morpholines; Naphthalenes; Norepinephrine; Norepinephrine Plasma Membrane Transport Proteins; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Time Factors; Tyramine | 2013 |
Endocannabinoids in nervous system health and disease: the big picture in a nutshell.
The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related 'phytocannabinoid' compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the 'endocannabinoids' and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness. Topics: Arachidonic Acids; Brain; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Dronabinol; Electrical Synapses; Endocannabinoids; Glycerides; Humans; Inflammation; Neurodegenerative Diseases; Neurogenesis; Neuroprotective Agents; Nociceptors; Polyunsaturated Alkamides; Receptors, Cannabinoid; Synaptic Transmission | 2012 |
A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells.
The inflammatory response plays an important role in the pathogenesis of many diseases in the central nervous system. Cannabinoids exhibit diverse pharmacological actions including anti-inflammatory activity. In this study, we tried to elucidate possible effects of cannabinoids on lipopolysaccharide (LPS)-induced expression of inflammatory cytokine mRNAs in rat cerebellar granule cells.. Inhibitory effects of cannabinoids on cytokine induction in cerebellar granule cells were determined by RT-PCR method.. In these cells, both mRNA and protein of cannabinoid receptor 1 (CB(1) ), but not CB(2) , were expressed. LPS (1 µg/ml) produced a marked increase in the induction of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumour necrosis factor-α. CP55940, a synthetic cannabinoid analogue, concentration-dependently inhibited inflammatory cytokine expression induced by LPS. On the other hand, the endocannabinoids 2-arachidonoylglycerol and anandamide were not able to inhibit this inflammatory response. Notably, a CB(1) /CB(2) antagonist NESS0327 (3 µm) did not reverse the inhibition of cytokine mRNA expression induced by CP55940. GPR55, a putative novel cannabinoid receptor, mRNA was also expressed in cerebellar granule cells. Although it has been suggested that G(q) associates with GPR55, cannabinoids including CP55940 did not promote phosphoinositide hydrolysis and consequent elevation of intracellular Ca([2+]) concentration. Furthermore, a putative GPR55 antagonist, cannabidiol, also showed a similar inhibitory effect to that of CP55940.. These results suggest that the synthetic cannabinoid CP55940 negatively modulates cytokine mRNA expression in cerebellar granule cells by a CB and GPR55 receptor-independent mechanism. Topics: Animals; Anti-Inflammatory Agents; Arachidonic Acids; Calcium; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Cannabinoids; Cerebellum; Cyclohexanols; Cytokines; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Inflammation; Lipopolysaccharides; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2011 |
Interactions of cannabidiol with endocannabinoid signalling in hippocampal tissue.
The phytocannabinoid cannabidiol (CBD) possesses no psychotropic activity amid potentially beneficial therapeutic applications. We here characterized interactions between CBD (1 microM) and the endocannabinoid system in cultured rat hippocampal cells. The CBD-induced Ca2+ rise observed in neurons and glia was markedly reduced in the presence of the endogenous cannabinoid anandamide in neurons, with no alteration seen in glia. Neuronal CBD responses were even more reduced in the presence of the more abundant endocannabinoid 2-arachidonyl glycerol, this action was maintained in the presence of the CB1 receptor antagonist AM281 (100 nM). Neuronal CBD responses were also reduced by pre-exposure to glutamate, expected to increase endocannabinoid levels by increasing in [Ca2+]i. Application of AM281 at 1 microM elevated CBD-induced Ca2+ responses in both cell types, further confirming our finding that endocannabinoid-mediated signalling is negatively coupled to the action of CBD. However, upregulation of endogenous levels of endocannabinoids via inhibition of endocannabinoid hydrolysis (with URB597 and MAFP) could not be achieved under resting conditions. Because delta9-tetrahydrocannabinol did not mimic the endocannabinoid actions, and pertussis toxin treatment had no effect on CBD responses, we propose that the effects of AM281 were mediated via a constitutively active signalling pathway independent of CB1 signalling. Instead, signalling via G(q/11) and phospholipase C appears to be negatively coupled to CBD-induced Ca2+ responses, as the inhibitor U73122 enhanced CBD responses. Our data highlight the interaction between exogenous and endogenous cannabinoid signalling, and provide evidence for the presence of an additional pharmacological target, sensitive to endocannabinoids and to AM281. Topics: Animals; Arachidonic Acids; Benzamides; Calcium; Cannabidiol; Cannabinoid Receptor Modulators; Carbamates; Cells, Cultured; Dronabinol; Endocannabinoids; Estrenes; Glutamic Acid; Glycerides; Hippocampus; Humans; Morpholines; Pertussis Toxin; Phosphodiesterase Inhibitors; Polyunsaturated Alkamides; Pyrazoles; Pyrrolidinones; Rats; Receptor, Cannabinoid, CB1; Signal Transduction | 2007 |
Neuroscience. Stout guards of the central nervous system.
Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy. Topics: Animals; Anticonvulsants; Arachidonic Acids; Brain; Brain Diseases; Cannabidiol; Cannabinoid Receptor Modulators; Cannabinoids; Convulsants; Dronabinol; Endocannabinoids; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Glycerides; Humans; Kainic Acid; Mice; Neurons; Neuroprotective Agents; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction | 2003 |