cannabidiol has been researched along with delta(9)-tetrahydrocannabinolic-acid* in 9 studies
9 other study(ies) available for cannabidiol and delta(9)-tetrahydrocannabinolic-acid
Article | Year |
---|---|
Evaluation of decarboxylation efficiency of Δ
Decarboxylation of Δ. The production of Δ. These findings indicated that TBA improved the production of Δ Topics: Cannabidiol; Decarboxylation; Dronabinol; Ethanol; Solvents | 2023 |
Cis-Δ
Cannabidiolic acid (CBDA) and trans-Δ Topics: Cannabidiol; Cannabis; Chromatography, High Pressure Liquid; Dronabinol | 2022 |
Cannabichromene and Δ
Topics: Cannabinoids; Cannabis; Databases, Chemical; Dronabinol; Enzyme Inhibitors; Lactate Dehydrogenase 5; Molecular Docking Simulation; Molecular Structure | 2021 |
Cannabinoid Metabolites as Inhibitors of Major Hepatic CYP450 Enzymes, with Implications for Cannabis-Drug Interactions.
The legalization of cannabis in many parts of the United States and other countries has led to a need for a more comprehensive understanding of cannabis constituents and their potential for drug-drug interactions. Although (-)- Topics: Biotransformation; Cannabidiol; Cannabinoids; Cannabinol; Cannabis; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Dronabinol; Drug Interactions; Glucuronosyltransferase; HEK293 Cells; Hepatobiliary Elimination; Humans | 2021 |
Potential occupational and respiratory hazards in a Minnesota cannabis cultivation and processing facility.
Cannabis has been legalized in some form for much of the United States. The National Institute for Occupational Safety and Health (NIOSH) received a health hazard evaluation request from a Minnesota cannabis facility and their union to undertake an evaluation.. NIOSH representatives visited the facility in August 2016 and April 2017. Surface wipe samples were collected for analysis of delta-9 tetrahydrocannabinol (Δ9-THC), delta-9 tetrahydrocannabinol acid (Δ9-THCA), cannabidiol, and cannabinol. Environmental air samples were collected for volatile organic compounds (VOCs), endotoxins (limulus amebocyte lysate assay), and fungal diversity (NIOSH two-stage BC251 bioaerosol sampler with internal transcribed spacer region sequencing analysis).. Surface wipe samples identified Δ9-THC throughout the facility. Diacetyl and 2,3-pentanedione were measured in initial VOC screening and subsequent sampling during tasks where heat transference was greatest, though levels were well below the NIOSH recommended exposure limits. Endotoxin concentrations were highest during processing activities, while internal transcribed spacer region sequencing revealed that the Basidiomycota genus, Wallemia, had the highest relative abundance.. To the authors' knowledge, this is the first published report of potential diacetyl and 2,3-pentanedione exposure in the cannabis industry, most notably during cannabis decarboxylation. Endotoxin exposure was elevated during grinding, indicating that this is a potentially high-risk task. The findings indicate that potential health hazards of significance are present during cannabis processing, and employers should be aware of potential exposures to VOCs, endotoxin, and fungi. Further research into the degree of respiratory and dermal hazards and resulting health effects in this industry is recommended. Topics: Agriculture; Air Microbiology; Air Pollutants, Occupational; Cannabidiol; Cannabinol; Cannabis; Dronabinol; Endotoxins; Humans; Inhalation Exposure; Minnesota; Occupational Exposure; Volatile Organic Compounds | 2019 |
Interpretation of Cannabis Findings in the Hair of Very Young Children: Mission Impossible.
Hair has been suggested since the middle of the 90's to be a suitable matrix to document repetitive exposure to cannabis. Because it is possible to detect Δ9-tetrahydrocannabinol (THC), cannabinol (CBN) and cannabidiol (CBD) in cannabis smoke, the identification of the metabolite, 11-nor-Δ9-tetrahydrocannabinol carboxylic acid (THC-COOH) has been considered to allow the discrimination of active use.. Although the identification of an active compound in a child's hair shows contamination of the local environment, it is a challenge to discriminate between hair incorporation after ingestion or inhalation and environmental external deposition from dust, smoke, or even contaminated surfaces by hand contact. However, it is particularly important in case of children to correctly interpret the data, particularly for a realistic assessment of the health risk. We present here a series of hair tests for cannabis where the interpretation was almost impossible to establish.. Hair specimens were collected during the autopsy of the 12 children, aged 2 to 24 months, either deceased from shaken baby syndrome (SBS, n=4), mechanic asphyxia (MA, n=1) or sudden infant death (SID, n=7) during January 2015 to April 2017. After decontamination, the hair specimens were tested for THC, CBN and CBD and THC-COOH. The whole length of hair was submitted to analysis.. The amount of hair from children can be as low as 8 mg. This may affect the limit of quantitation of all drugs, but particularly THC-COOH. Eight from twelve hair tests were positive for cannabis markers, i.e. THC (39 to 1890 pg/mg, n=8), CBN (< 5 to 1300 pg/mg n=8), CBD (10 to 2300 pg/mg, n=8) and THC-COOH (not detected to < 0.5 pg/mg, n=5). In 4 cases from 8 positive findings, it was not possible to test for THC-COOH (not enough material).. Establishing a window of detection when testing for drugs in young children is a very complicated task. Hair from children is finer and more porous in comparison with adult (the risk of contamination from sweat and environmental smoke is higher than in adults). The final interpretation of cannabinoid findings in the children's hair is very complicated as this can result from in utero exposure (although none of the mother admitted cannabis use during pregnancy), oral cannabis administration by the parents to achieve sedation, close contact to cannabis consumers (hands, bedding, dishes) and inhalation of side-stream smoke. Over-interpreting cannabis findings in hair can have very serious legal implication in child protection cases. Practicing scientists have the responsibility to inform the child protection authorities, courts, etc. about these limitations. Topics: Cannabidiol; Cannabinoids; Cannabinol; Dronabinol; Environmental Exposure; Forensic Toxicology; Gas Chromatography-Mass Spectrometry; Hair; Humans; Infant; Limit of Detection; Marijuana Abuse; Specimen Handling; Substance Abuse Detection | 2017 |
Simultaneous quantification of delta-9-THC, THC-acid A, CBN and CBD in seized drugs using HPLC-DAD.
An HPLC-DAD method for the quantitative analysis of Δ(9)-tetrahydrocannabinol (THC), Δ(9)-tetrahydrocannabinolic acid-A (THCA-A), cannabidiol (CBD), and cannabinol (CBN) in confiscated cannabis products has been developed, fully validated and applied to analyse seized cannabis products. For determination of the THC content of plant material, this method combines quantitation of THCA-A, which is the inactive precursor of THC, and free THC. Plant material was dried, homogenized and extracted with methanol by ultrasonication. Chromatographic separation was achieved with a Waters Alliance 2695 HPLC equipped with a Merck LiChrospher 60 RP-Select B (5μm) precolumn and a Merck LiChroCart 125-4 LiChrospher 60 RP-Select B (5μm) analytical column. Analytes were detected and quantified using a Waters 2996 photo diode array detector. This method has been accepted by the public authorities of Switzerland (Bundesamt für Gesundheit, Federal Office of Public Health), and has been used to analyse 9092 samples since 2000. Since no thermal decarboxylation of THCA-A occurs, the method is highly reproducible for different cannabis materials. Two calibration ranges are used, a lower one for THC, CBN and CBD, and a higher one for THCA-A, due to its dominant presence in fresh plant material. As provider of the Swiss proficiency test, the robustness of this method has been tested over several years, and homogeneity tests even in the low calibration range (1%) show high precision (RSD≤4.3%, except CBD) and accuracy (bias≤4.1%, except CBN). Topics: Cannabidiol; Cannabinol; Cannabis; Chromatography, High Pressure Liquid; Dronabinol; Plant Extracts; Psychotropic Drugs | 2014 |
Effects of cannabinoids Δ(9)-tetrahydrocannabinol, Δ(9)-tetrahydrocannabinolic acid and cannabidiol in MPP+ affected murine mesencephalic cultures.
Cannabinoids derived from Cannabis sativa demonstrate neuroprotective properties in various cellular and animal models. Mitochondrial impairment and consecutive oxidative stress appear to be major molecular mechanisms of neurodegeneration. Therefore we studied some major cannabinoids, i.e. delta-9-tetrahydrocannabinolic acid (THCA), delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in mice mesencephalic cultures for their protective capacities against 1-methyl-4-phenyl pyridinium (MPP(+)) toxicity. MPP(+) is an established model compound in the research of parkinsonism that acts as a complex I inhibitor of the mitochondrial respiratory chain, resulting in excessive radical formation and cell degeneration. MPP(+) (10 μM) was administered for 48 h at the 9th DIV with or without concomitant cannabinoid treatment at concentrations ranging from 0.01 to 10 μM. All cannabinoids exhibited in vitro antioxidative action ranging from 669 ± 11.1 (THC), 16 ± 3.2 (THCA) to 356 ± 29.5 (CBD) μg Trolox (a vitamin E derivative)/mg substance in the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) assay. Cannabinoids were without effect on the morphology of dopaminergic cells stained by tyrosine hydroxylase (TH) immunoreaction. THC caused a dose-dependent increase of cell count up to 17.3% at 10 μM, whereas CBD only had an effect at highest concentrations (decrease of cell count by 10.1-20% at concentrations of 0.01-10 μM). It influenced the viability of the TH immunoreactive neurons significantly, whereas THCA exerts no influence on dopaminergic cell count. Exposure of cultures to 10 μM of MPP(+) for 48 h significantly decreased the number of TH immunoreactive neurons by 44.7%, and shrunken cell bodies and reduced neurite lengths could be observed. Concomitant treatment of cultures with cannabinoids rescued dopaminergic cells. Compared to MPP(+) treated cultures, THC counteracted toxic effects in a dose-dependent manner. THCA and CBD treatment at a concentration of 10 μM lead to significantly increased cell counts to 123% and 117%, respectively. Even though no significant preservation or recovery of neurite outgrowth to control values could be observed, our data show that cannabinoids THC and THCA protect dopaminergic neurons against MPP(+) induced cell death. Topics: 1-Methyl-4-phenylpyridinium; Animals; Antioxidants; Cannabidiol; Cannabis; Cells, Cultured; Dopaminergic Neurons; Dose-Response Relationship, Drug; Dronabinol; Drug Evaluation, Preclinical; Female; Free Radical Scavengers; Mesencephalon; Mice; Neuroprotective Agents; Pregnancy; Tyrosine 3-Monooxygenase | 2012 |
[Simultaneous determination of delta-9-tetrahydrocannabinol cannabidiol and cannabinol in edible oil using ultra performance liquid chromatography-tandem mass spectrometry].
A method for the simultaneous determination of delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) in edible oil was developed using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The target compounds were extracted with methanol, purified by an LC-Alumina-N solid phase extraction cartridge, separated and detected by the UPLC-MS/MS. Quantitative analysis was corrected by an isotope internal standard method using delta-9-THC-D3 as internal standard. Average recoveries for the target compounds varied from 68.0% to 101.6% with the relative standard deviations ranging from 7.0% to 20.1% at three spiked levels. The limits of detection (LOD) of the method were from 0.06-0.17 microg/kg and the limits of quantification (LOQ) were in the range of 0.20-0.52 microg/kg. The results showed that the method is able to meet the requirements for the simultaneous determination of THC, CBD and CBN in edible oil. Topics: Cannabidiol; Cannabinol; Chromatography, High Pressure Liquid; Dronabinol; Food Contamination; Plant Oils; Tandem Mass Spectrometry | 2010 |