cannabidiol has been researched along with anandamide* in 42 studies
7 review(s) available for cannabidiol and anandamide
Article | Year |
---|---|
Cannabinoids in the Modulation of Oxidative Signaling.
Cannabis sativa-derived compounds, such as delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), and components of the endocannabinoids system, such as N-arachidonoylethanolamide (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), are extensively studied to investigate their numerous biological effects, including powerful antioxidant effects. Indeed, a series of recent studies have indicated that many disorders are characterized by alterations in the intracellular antioxidant system, which lead to biological macromolecule damage. These pathological conditions are characterized by an unbalanced, and most often increased, reactive oxygen species (ROS) production. For this study, it was of interest to investigate and recapitulate the antioxidant properties of these natural compounds, for the most part CBD and THC, on the production of ROS and the modulation of the intracellular redox state, with an emphasis on their use in various pathological conditions in which the reduction of ROS can be clinically useful, such as neurodegenerative disorders, inflammatory conditions, autoimmunity, and cancers. The further development of ROS-based fundamental research focused on cannabis sativa-derived compounds could be beneficial for future clinical applications. Topics: Antioxidants; Cannabidiol; Cannabinoids; Cannabis; Dronabinol; Oxidation-Reduction; Oxidative Stress; Reactive Oxygen Species | 2023 |
Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years.
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ Topics: Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Cannabis; Carrier Proteins; Child; Dronabinol; Endocannabinoids; Hallucinogens; Humans | 2023 |
Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders.
Cannabidiol (CBD) is a major phytocannabinoid present in the Cannabis sativa plant. It lacks the psychotomimetic and other psychotropic effects that the main plant compound Δ(9)-tetrahydrocannabinol (THC) being able, on the contrary, to antagonize these effects. This property, together with its safety profile, was an initial stimulus for the investigation of CBD pharmacological properties. It is now clear that CBD has therapeutic potential over a wide range of non-psychiatric and psychiatric disorders such as anxiety, depression and psychosis. Although the pharmacological effects of CBD in different biological systems have been extensively investigated by in vitro studies, the mechanisms responsible for its therapeutic potential are still not clear. Here, we review recent in vivo studies indicating that these mechanisms are not unitary but rather depend on the behavioural response being measured. Acute anxiolytic and antidepressant-like effects seem to rely mainly on facilitation of 5-HT1A-mediated neurotransmission in key brain areas related to defensive responses, including the dorsal periaqueductal grey, bed nucleus of the stria terminalis and medial prefrontal cortex. Other effects, such as anti-compulsive, increased extinction and impaired reconsolidation of aversive memories, and facilitation of adult hippocampal neurogenesis could depend on potentiation of anandamide-mediated neurotransmission. Finally, activation of TRPV1 channels may help us to explain the antipsychotic effect and the bell-shaped dose-response curves commonly observed with CBD. Considering its safety profile and wide range of therapeutic potential, however, further studies are needed to investigate the involvement of other possible mechanisms (e.g. inhibition of adenosine uptake, inverse agonism at CB2 receptor, CB1 receptor antagonism, GPR55 antagonism, PPARγ receptors agonism, intracellular (Ca(2+)) increase, etc.), on CBD behavioural effects. Topics: Animals; Anti-Anxiety Agents; Antidepressive Agents; Anxiety Disorders; Arachidonic Acids; Cannabidiol; Clinical Trials as Topic; Depression; Dose-Response Relationship, Drug; Endocannabinoids; Humans; Neurogenesis; Phytotherapy; Polyunsaturated Alkamides; Psychotic Disorders; Receptor, Cannabinoid, CB1; Receptor, Serotonin, 5-HT1A; Synaptic Transmission; TRPV Cation Channels | 2012 |
Potential antipsychotic properties of central cannabinoid (CB1) receptor antagonists.
Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the principal psychoactive constituent of the Cannabis sativa plant, and other agonists at the central cannabinoid (CB(1)) receptor may induce characteristic psychomotor effects, psychotic reactions and cognitive impairment resembling schizophrenia. These effects of Delta(9)-THC can be reduced in animal and human models of psychopathology by two exogenous cannabinoids, cannabidiol (CBD) and SR141716. CBD is the second most abundant constituent of Cannabis sativa that has weak partial antagonistic properties at the CB(1) receptor. CBD inhibits the reuptake and hydrolysis of anandamide, the most important endogenous CB(1) receptor agonist, and exhibits neuroprotective antioxidant activity. SR141716 is a potent and selective CB(1) receptor antagonist. Since both CBD and SR141716 can reverse many of the biochemical, physiological and behavioural effects of CB(1) receptor agonists, it has been proposed that both CBD and SR141716 have antipsychotic properties. Various experimental studies in animals, healthy human volunteers, and schizophrenic patients support this notion. Moreover, recent studies suggest that cannabinoids such as CBD and SR141716 have a pharmacological profile similar to that of atypical antipsychotic drugs. In this review, both preclinical and clinical studies investigating the potential antipsychotic effects of both CBD and SR141716 are presented together with the possible underlying mechanisms of action. Topics: Animals; Antipsychotic Agents; Arachidonic Acids; Cannabidiol; Endocannabinoids; Humans; Memory; Piperidines; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant; Schizophrenia; Sensory Gating | 2010 |
The endocannabinoid system: drug targets, lead compounds, and potential therapeutic applications.
Topics: Amides; Amidohydrolases; Amines; Animals; Arachidonic Acids; Binding Sites; Cannabinoid Receptor Modulators; Drug Design; Endocannabinoids; Esters; Ethers; Glycerides; Humans; Ligands; Monoacylglycerol Lipases; Polyunsaturated Alkamides; Receptors, Cannabinoid | 2005 |
Cannabinoids in bipolar affective disorder: a review and discussion of their therapeutic potential.
Bipolar affective disorder is often poorly controlled by prescribed drugs. Cannabis use is common in patients with this disorder and anecdotal reports suggest that some patients take it to alleviate symptoms of both mania and depression. We undertook a literature review of cannabis use by patients with bipolar disorder and of the neuropharmacological properties of cannabinoids suggesting possible therapeutic effects in this condition. No systematic studies of cannabinoids in bipolar disorder were found to exist, although some patients claim that cannabis relieves symptoms of mania and/or depression. The cannabinoids Delta(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD) may exert sedative, hypnotic, anxiolytic, antidepressant, antipsychotic and anticonvulsant effects. Pure synthetic cannabinoids, such as dronabinol and nabilone and specific plant extracts containing THC, CBD, or a mixture of the two in known concentrations, are available and can be delivered sublingually. Controlled trials of these cannabinoids as adjunctive medication in bipolar disorder are now indicated. Topics: Arachidonic Acids; Bipolar Disorder; Cannabidiol; Cannabinoids; Dronabinol; Endocannabinoids; Humans; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1 | 2005 |
[A novel analgesics made from Cannabis].
Bayer AG has recently announced that it acquired exclusive rights for the marketing of GW Pharmaceuticals' new medicine Sativex in Europe and in other regions. Sativex is a sublingual spray on Cannabis extract basis, and is equipped with an electronic tool to facilitate accurate dosing and to prevent misuses. It is standardized for the THC and CBD. The new analgesic is proposed for the treatment of muscle spasticity and pains accompanying multiple sclerosis and as an efficient analgetic for neurogenic pain not responding well to opioids and to other therapies available. The entirely new mechanism of action through the recently discovered cannabinoid receptor system may offer a real therapeutic potential to the drug. Although the Government of Netherlands has authorized the sale of pharmaceutical grade Cannabis herb by pharmacies in the Netherlands, the availability on the pharmaceutical market of the registered preparation may render requests for the authorization of the smoking of Cannabis herb (marihuana) by individuals suffering of multiple sclerosis, neurogenic pain, AIDS wasting syndrome unnecessary. Nevertheless, the "old chameleon" plant Cannabis appears to gradually regain its previous status in mainstream therapy and pharmacy. As long as the plant Cannabis and its products continue to be classified as narcotic drugs, medical use of the new preparation will need close supervision. Topics: Analgesics; Arachidonic Acids; Cannabidiol; Cannabinoids; Cannabis; Dronabinol; Drug Combinations; Drugs, Investigational; Endocannabinoids; Europe; Humans; Multiple Sclerosis; Pain; Plant Extracts; Polyunsaturated Alkamides | 2004 |
4 trial(s) available for cannabidiol and anandamide
Article | Year |
---|---|
Effects of cannabidiol on anandamide levels in individuals with cannabis use disorder: findings from a randomised clinical trial for the treatment of cannabis use disorder.
Cannabidiol (CBD) has shown promise in treating psychiatric disorders, including cannabis use disorder - a major public health burden with no approved pharmacotherapies. However, the mechanisms through which CBD acts are poorly understood. One potential mechanism of CBD is increasing levels of anandamide, which has been implicated in psychiatric disorders including depression and cannabis use disorder. However, there is a lack of placebo-controlled human trials investigating this in psychiatric disorders. We therefore assessed whether CBD affects plasma anandamide levels compared to placebo, within a randomised clinical trial of CBD for the treatment of cannabis use disorder. Individuals meeting criteria for cannabis use disorder and attempting cannabis cessation were randomised to 28-day administration with placebo (n = 23), 400 mg CBD/day (n = 24) or 800 mg CBD/day (n = 23). We estimated the effects of each CBD dose compared to placebo on anandamide levels from baseline to day 28. Analyses were conducted both unadjusted and adjusted for cannabis use during the trial to account for effects of cannabis on the endocannabinoid system. We also investigated whether changes in plasma anandamide levels were associated with clinical outcomes relevant for cannabis use disorder (cannabis use, withdrawal, anxiety, depression). There was an effect of 800 mg CBD compared to placebo on anandamide levels from baseline to day 28 after adjusting for cannabis use. Pairwise comparisons indicated that anandamide levels unexpectedly reduced from baseline to day 28 in the placebo group (-0.048, 95% CI [-0.089, -0.007]), but did not change in the 800 mg CBD group (0.005, 95% CI [-0.036, 0.047]). There was no evidence for an effect of 400 mg CBD compared to placebo. Changes in anandamide levels were not associated with clinical outcomes. In conclusion, this study found preliminary evidence that 28-day treatment with CBD modulates anandamide levels in individuals with cannabis use disorder at doses of 800 mg/day but not 400 mg/day compared to placebo. Topics: Cannabidiol; Cannabis; Double-Blind Method; Dronabinol; Endocannabinoids; Hallucinogens; Humans; Marijuana Abuse | 2023 |
Eight Weeks of Daily Cannabidiol Supplementation Improves Sleep Quality and Immune Cell Cytotoxicity.
The endocannabinoid system is active in nervous and immune cells and involves the expression of two cannabinoid receptor genes (CB1 and CB2), along with endogenous endocannabinoid ligands, 2-arachidonoyl glycerol (2-AG) and arachidonoyl ethanolamide (anandamide), and their synthetic enzymes. Cannabidiol (CBD) is a non-intoxicating exogenous cannabinoid agonist derived from plants that, at high doses, has received FDA approval as an anticonvulsant for epileptic seizures, and at low doses is marketed as a food-grade supplement for improved mental health, sleep quality, and immunological function. At present, the predominance of published CBD clinical research has focused on ameliorative or disease-specific intervention, with few trials investigating CBD effects in healthy populations.. This clinical study aimed to investigate the effects of 8 weeks of 50 mg oral CBD on mental health, sleep quantity and quality, and immune cell function in healthy, college-aged individuals. Twenty-eight participants (average age 25.9 ± 6.1 y) were randomized to receive either daily oral capsules of 50 mg of CBD (CB,. After completing the 8-week intervention, there were no significant changes in body weight and BMI (CN: 1.09 ± 0.89%: CB: 1.41 ± 1.07%), or body fat percentage (CN: 9.01 ± 7.51%: CB: 8.57 ± 7.81%), respectively (values are % change pre to post,. Eight weeks of daily 50 mg CBD may improve sleep quality, and NK immunosurveillance in healthy, younger adults. Topics: Adult; Cannabidiol; Dietary Supplements; Endocannabinoids; Humans; Sleep Quality; Young Adult | 2023 |
Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia.
Cannabidiol is a component of marijuana that does not activate cannabinoid receptors, but moderately inhibits the degradation of the endocannabinoid anandamide. We previously reported that an elevation of anandamide levels in cerebrospinal fluid inversely correlated to psychotic symptoms. Furthermore, enhanced anandamide signaling let to a lower transition rate from initial prodromal states into frank psychosis as well as postponed transition. In our translational approach, we performed a double-blind, randomized clinical trial of cannabidiol vs amisulpride, a potent antipsychotic, in acute schizophrenia to evaluate the clinical relevance of our initial findings. Either treatment was safe and led to significant clinical improvement, but cannabidiol displayed a markedly superior side-effect profile. Moreover, cannabidiol treatment was accompanied by a significant increase in serum anandamide levels, which was significantly associated with clinical improvement. The results suggest that inhibition of anandamide deactivation may contribute to the antipsychotic effects of cannabidiol potentially representing a completely new mechanism in the treatment of schizophrenia. Topics: Acute Disease; Adult; Amides; Amisulpride; Antipsychotic Agents; Arachidonic Acids; Cannabidiol; Double-Blind Method; Drug Therapy, Combination; Endocannabinoids; Ethanolamines; Female; Humans; Male; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides; Psychiatric Status Rating Scales; Schizophrenia; Schizophrenic Psychology; Signal Transduction; Sulpiride; Young Adult | 2012 |
Lack of effect of cannabis-based treatment on clinical and laboratory measures in multiple sclerosis.
The endocannabinoid system (ECS) is involved in the pathophysiology of multiple sclerosis (MS), and relief from pain and spasticity has been reported in MS patients self-medicating with marijuana. A cannabis-based medication containing Delta(9)-tetrahydrocannabinol and cannabidiol (Sativex) has been approved in some countries for the treatment of MS-associated pain. The effects of this pharmaceutical preparation on other clinically relevant aspects of MS pathophysiology, however, are still unclear. In 20 MS patients, we measured the effects of Sativex on clinically measured spasticity and on neurophysiological and laboratory parameters that correlate with spasticity severity or with the modulation of the ECS. Sativex failed to affect spasticity and stretch reflex excitability. This compound also failed to affect the synthesis and the degradation of the endocannabinoid anandamide, as well as the expression of both CB1 and CB2 cannabinoid receptors in various subpopulations of peripheral lymphocytes. Topics: Adult; Arachidonic Acids; Cannabidiol; Cannabinoids; Dronabinol; Drug Combinations; Endocannabinoids; Female; Humans; Lymphocytes; Male; Middle Aged; Multiple Sclerosis; Muscle Spasticity; Pain; Plant Extracts; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Reflex, Stretch; Treatment Outcome; Young Adult | 2009 |
31 other study(ies) available for cannabidiol and anandamide
Article | Year |
---|---|
Orthogonal Strategies for Profiling Potential Cellular Targets of Anandamide and Cannabidiol.
The human endocannabinoid system regulates a myriad of physiological processes through a complex lipid signaling network involving cannabinoids and their respective receptors, cannabinoid receptor 1 (hCB Topics: Cannabidiol; Cannabinoids; Carrier Proteins; Endocannabinoids; Humans; Polyunsaturated Alkamides | 2023 |
Chronic Cannabidiol Administration Fails to Diminish Blood Pressure in Rats with Primary and Secondary Hypertension Despite Its Effects on Cardiac and Plasma Endocannabinoid System, Oxidative Stress and Lipid Metabolism.
We investigated the influence of cannabidiol (CBD) on blood pressure (BP) and heart rate (HR) in spontaneously (SHR) and deoxycorticosterone (DOCA-salt) hypertensive rats. Hypertension was connected with increases in cardiac and plasma markers of lipid peroxidation in both models, whereas cardiac endocannabinoid levels decreased in SHR and increased in DOCA-salt. CBD (10 mg/kg once a day for 2 weeks) did not modify BP and HR in hypertension but counteracted pro-oxidant effects. Moreover, it decreased cardiac or plasma levels of anandamide, 2-arachidonoylglycerol and oleoyl ethanolamide in DOCA-salt and inhibited the activity of fatty acid amide hydrolase (FAAH) in both models. In the respective normotensive control rats, CBD increased lipid peroxidation, free fatty acid levels and FAAH activity. In conclusion, chronic CBD administration does not possess antihypertensive activity in a model of primary and secondary (DOCA-salt) hypertension, despite its antioxidant effect. The latter may be direct rather than based on the endocannabinoid system. The unexpected CBD-related increase in lipid peroxidation in normotensive controls may lead to untoward effects; thus, caution should be kept if CBD is used therapeutically. Topics: Amidohydrolases; Animals; Arachidonic Acids; Blood Pressure; Cannabidiol; Endocannabinoids; Fatty Acids, Nonesterified; Heart; Heart Rate; Hypertension; Lipid Metabolism; Myocardium; Oxidative Stress; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptors, Cannabinoid | 2020 |
Working out with weed.
Topics: Adult; Arachidonic Acids; Athletic Performance; Cannabidiol; Cannabis; Doping in Sports; Dronabinol; Endocannabinoids; Exercise; Female; Humans; Inflammation; Male; Marijuana Use; Motivation; Performance-Enhancing Substances; Polyunsaturated Alkamides; Reproducibility of Results; Young Adult | 2019 |
Peripubertal cannabidiol treatment rescues behavioral and neurochemical abnormalities in the MAM model of schizophrenia.
In agreement with the neurodevelopmental hypothesis of schizophrenia, prenatal exposure of rats to the antimitotic agent methylazoxymethanol acetate (MAM) at gestational day 17 produced long-lasting behavioral alterations such as social withdrawal and cognitive impairment in the social interaction test and in the novel object recognition test, respectively. At the molecular level, an increased cannabinoid receptor type-1 (CB1) mRNA and protein expression, which might be due to reduction in DNA methylation at the gene promoter in the prefrontal cortex (PFC), coincided with deficits in the social interaction test and in the novel object recognition test in MAM rats. Both the schizophrenia-like phenotype and altered transcriptional regulation of CB1 receptors were reversed by peripubertal treatment (from PND 19 to PND 39) with the non-psychotropic phytocannabinoid cannabidiol (30 mg/kg/day), or, in part, by treatment with the cannabinoid CB1 receptor antagonist/inverse agonist AM251 (0.5 mg/kg/day), but not with haloperidol (0.6 mg/kg/day). These results suggest that early treatment with cannabidiol may prevent both the appearance of schizophrenia-like deficits as well as CB1 alterations in the PFC at adulthood, supporting that peripubertal cannabidiol treatment might be protective against MAM insult. Topics: Amides; Animals; Arachidonic Acids; Cannabidiol; Disease Models, Animal; Endocannabinoids; Ethanolamines; Female; Glycerides; Hippocampus; Interpersonal Relations; Male; Methylazoxymethanol Acetate; Motor Activity; Oleic Acids; Palmitic Acids; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Puberty; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Recognition, Psychology; RNA, Messenger; Schizophrenia | 2019 |
Anti-inflammatory Properties of Cannabidiol, a Nonpsychotropic Cannabinoid, in Experimental Allergic Contact Dermatitis.
Phytocannabinoids modulate inflammatory responses by regulating the production of cytokines in several experimental models of inflammation. Cannabinoid type-2 (CB Topics: Anti-Inflammatory Agents; Arachidonic Acids; Cannabidiol; Cell Line; Chemokine CCL8; Dermatitis, Allergic Contact; Endocannabinoids; Humans; Interleukin-6; Interleukin-8; Polyunsaturated Alkamides; Tumor Necrosis Factor-alpha | 2018 |
Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex-Possible involvement of 5-HT1A and CB1 receptors.
Systemic administration of cannabidiol (CBD), the main non-psychotomimetic constituent of Cannabis sativa, induces antidepressant-like effects. The mechanism of action of CBD is thought to involve the activation of 5-HT1A receptors and the modulation of endocannabinoid levels with subsequent CB1 activation. The brain regions involved in CBD-induced antidepressant-like effects remain unknown. The ventral medial prefrontal cortex (vmPFC), which includes the infralimbic (IL) and prelimbic (PL) subregions, receives dense serotonergic innervation and plays a significant role in stress responses.. To test the hypothesis that the administration of CBD into the IL or PL would induce an antidepressant-like effect through 5-HT1A and CB1 activation.. Rats received intra-IL or -PL microinjections of CBD (10-60 nmol/side), 8-OH-DPAT (5-HT1A agonist, 5-10 nmol/side), anandamide (AEA, 0.5 pmol/side) or vehicle (0.2 μl/side) and were submitted to the forced swimming (FST) or to the open field (OFT) tests. Independent CBD-treated groups were pre-treated with WAY100635 (10, 30 nmol/side, 5-HT1A antagonist) or AM251 (10 pmol/side, CB1 antagonist) and submitted to the same tests. An additional group was treated with WAY100635 followed by anandamide.. CBD (PL: 10-60 nmol; IL:45-60 nmol) and 8-OH-DPAT (10 nmol) administration significantly reduced the immobility time in the FST, without changing locomotor activity in the OFT. WAY100635 (30 nmol) did not induce effect per se but blocked CBD, 8-OH-DPAT and AEA effects. Additionally, AM251 blocked CBD-effects.. administration of CBD into the vmPFC induces antidepressant-like effects possibly through indirect activation of CB1 and 5-HT1A receptors. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Antidepressive Agents; Arachidonic Acids; Behavior, Animal; Cannabidiol; Endocannabinoids; Male; Motor Activity; Piperazines; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pyrazoles; Pyridines; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Receptor, Serotonin, 5-HT1A; Serotonin 5-HT1 Receptor Agonists; Serotonin Antagonists | 2016 |
Differential effects of endogenous, phyto and synthetic cannabinoids on thrombogenesis and platelet activity.
This study analysed the impact of anandamide, cannabidiol (CBD), and WIN55,212-2 on platelet activity and thrombogenesis for the first time. The effects of the cannabinoids on venular thrombosis were studied in the ear of hairless mice. Cannabinoid treatment was performed either once or repetitive by a once-daily administration for three days. To assess the role of cyclooxygenase metabolites in the putative action of anandamide, in vivo studies likewise included a combined administration of anandamide with indomethacin. In vitro, the effect of the cannabinoids on human platelet activation was studied by means of P-selectin expression using flow cytometry. Platelets were analysed under resting or thrombin receptor activating peptide (TRAP)-stimulated conditions, both after cannabinoid treatment alone and after TRAP stimulation and subsequent cannabinoid exposure. Finally, platelet count was assessed after treatment with high concentrations of anandamide. Anandamide, but not CBD and WIN55,212-2, significantly accelerated thrombus growth after one-time treatment as compared to vehicle control. Co-administration with indomethacin neutralized this effect. However, thrombogenesis was not altered by repeated treatment with the cannabinoids. In vitro, anandamide was shown to elicit a concentration-dependent activation of resting human platelets. However, at higher concentrations anandamide reduced the response to TRAP activation associated with a decrease of platelet count. CBD and WIN55,212-2 neither increased nor reduced activation of platelets. Acute exposure to anandamide elicits a cyclooxygenase-dependent prothrombotic effect in vivo. Anandamide seems to affect human platelet activation by a concentration-dependent toxic effect. By contrast, CBD and WIN55,212-2 were not associated with induction of thrombosis or activation of platelets. © 2016 BioFactors, 42(6):581-590, 2016. Topics: Animals; Arachidonic Acids; Benzoxazines; Blood Platelets; Cannabidiol; Cannabinoid Receptor Agonists; Drug Evaluation, Preclinical; Endocannabinoids; Fibrinolytic Agents; Humans; Male; Mice, Hairless; Morpholines; Naphthalenes; Platelet Activating Factor; Platelet Activation; Platelet Count; Polyunsaturated Alkamides; Thrombosis | 2016 |
Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol.
Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment. Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies. In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels. We first determined the biophysical consequences of epilepsy-associated missense mutations in both Nav1.1 (arginine 1648 to histidine and asparagine 1788 to lysine) and Nav1.6 (asparagine 1768 to aspartic acid and leucine 1331 to valine) by obtaining whole-cell patch clamp recordings in human embryonic kidney 293T cells with 200 μM Navβ4 peptide in the pipette solution to induce resurgent sodium currents. Resurgent sodium current is an atypical near threshold current predicted to increase neuronal excitability and has been implicated in multiple disorders of excitability. We found that both mutations in Nav1.6 dramatically increased resurgent currents while mutations in Nav1.1 did not. We then examined the effects of anandamide and cannabidiol on peak transient and resurgent currents from wild-type and mutant channels. Interestingly, we found that cannabidiol can preferentially target resurgent sodium currents over peak transient currents generated by wild-type Nav1.6 as well as the aberrant resurgent and persistent current generated by Nav1.6 mutant channels. To further validate our findings, we examined the effects of cannabidiol on endogenous sodium currents from striatal neurons, and similarly we found an inhibition of resurgent and persistent current by cannabidiol. Moreover, current clamp recordings show that cannabidiol reduces overall action potential firing of striatal neurons. These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes. Topics: Animals; Anticonvulsants; Arachidonic Acids; Calcium Channel Blockers; Cannabidiol; Endocannabinoids; Epilepsy; Female; HEK293 Cells; Humans; Male; Mice; NAV1.1 Voltage-Gated Sodium Channel; NAV1.6 Voltage-Gated Sodium Channel; Neostriatum; Neurons; Patch-Clamp Techniques; Polyunsaturated Alkamides | 2016 |
Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action.
Topics: Animals; Anti-Dyskinesia Agents; Arachidonic Acids; Brain; Cannabidiol; Capsaicin; Cyclooxygenase 2; Dyskinesia, Drug-Induced; Endocannabinoids; Extracellular Signal-Regulated MAP Kinases; Histones; Levodopa; Male; Mice, Inbred C57BL; NF-kappa B; Oxidopamine; Parkinsonian Disorders; Polyunsaturated Alkamides; PPAR gamma; Receptor, Cannabinoid, CB1; TRPV Cation Channels; Tyrosine 3-Monooxygenase | 2016 |
Interleukin 17A evoked mucosal damage is attenuated by cannabidiol and anandamide in a human colonic explant model.
Interleukin 17A (IL-17A) is a cytokine linked to inflammatory bowel disease. We investigated IL-17A expression in human colonic mucosa, whether IL-17A can elicit colonic mucosal damage in a human explant model and modulate gastrointestinal epithelial permeability in cell culture. We also tested if select cannabinoid ligands, shown to be protective in colitis models could attenuate damage caused by IL-17A. In addition, the ability of pro-inflammatory cytokines TNF-α and IL-1β to modulate levels of IL-17A in the explant colitis model was also explored. IL-17A incubation caused significant mucosal epithelial and crypt damage which were attenuated following hydrocortisone treatment, and also reduced following anandamide or cannabidiol incubation. IL-17A-evoked mucosal damage was also associated with an increase in matrix metalloprotease activity. However, IL-17A did not induce any significant changes in epithelial permeability in confluent Caco-2 cell monolayers over a 48h incubation period. IL-17A was located predominantly in human mucosal epithelium together with IL-17C, but both IL-17A and IL-17C were also expressed in the lamina propria and submucosa. Incubation of human colonic mucosal tissue or Caco-2 cells with pro-inflammatory cytokines TNF-α and IL-1β however did not alter IL-17A expression. These results indicate IL-17A has a widespread distribution in the human colon and the capacity to elicit mucosal damage which can be attenuated by cannabinoid ligands. Topics: Arachidonic Acids; Blotting, Western; Caco-2 Cells; Cannabidiol; Cell Membrane Permeability; Electric Impedance; Endocannabinoids; Epithelial Cells; Epithelium; Humans; In Vitro Techniques; Interleukin-17; Interleukin-1beta; Intestinal Mucosa; Ligands; Matrix Metalloproteinases; Models, Biological; Polyunsaturated Alkamides; Tumor Necrosis Factor-alpha | 2014 |
Cannabinoid-induced autophagy regulates suppressor of cytokine signaling-3 in intestinal epithelium.
Autophagy is a catabolic process involved in homeostatic and regulated cellular protein recycling and degradation via the lysosomal degradation pathway. Emerging data associate impaired autophagy, increased activity in the endocannabinoid system, and upregulation of suppressor of cytokine signaling-3 (SOCS3) protein expression during intestinal inflammation. We have investigated whether these three processes are linked. By assessing the impact of the phytocannabinoid cannabidiol (CBD), the synthetic cannabinoid arachidonyl-2'-chloroethylamide (ACEA), and the endocannabinoid N-arachidonoylethanolamine (AEA) on autophagosome formation, we explored whether these actions were responsible for cyclic SOCS3 protein levels. Our findings show that all three cannabinoids induce autophagy in a dose-dependent manner in fully differentiated Caco-2 cells, a model of mature intestinal epithelium. ACEA and AEA induced canonical autophagy, which was cannabinoid type 1 receptor-mediated. In contrast, CBD was able to bypass the cannabinoid type 1 receptor and the canonical pathway to induce autophagy, albeit to a lesser extent. Functionally, all three cannabinoids reduced SOCS3 protein expression, which was reversed by blocking early and late autophagy. In conclusion, the regulatory protein SOCS3 is regulated by autophagy, and cannabinoids play a role in this process, which could be important when therapeutic applications for the cannabinoids in inflammatory conditions are considered. Topics: Arachidonic Acids; Autophagy; Blotting, Western; Caco-2 Cells; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Dose-Response Relationship, Drug; Down-Regulation; Endocannabinoids; Humans; Intestinal Mucosa; Microscopy, Confocal; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; RNA Interference; Signal Transduction; Suppressor of Cytokine Signaling 3 Protein; Suppressor of Cytokine Signaling Proteins; Time Factors; Transfection | 2014 |
Cannabinoid-induced changes in respiration of brain mitochondria.
Cannabinoids exert various biological effects that are either receptor-mediated or independent of receptor signaling. Mitochondrial effects of cannabinoids were interpreted either as non-receptor-mediated alteration of mitochondrial membranes, or as indirect consequences of activation of plasma membrane type 1 cannabinoid receptors (CB1). Recently, CB1 receptors were confirmed to be localized to the membranes of neuronal mitochondria, where their activation directly regulates respiration and energy production. Here, we performed in-depth analysis of cannabinoid-induced changes of mitochondrial respiration using both an antagonist/inverse agonist of CB1 receptors, AM251 and the cannabinoid receptor agonists, Δ(9)-tetrahydrocannabinol (THC), cannabidiol, anandamide, and WIN 55,212-2. Relationships were determined between cannabinoid concentration and respiratory rate driven by substrates of complex I, II or IV in pig brain mitochondria. Either full or partial inhibition of respiratory rate was found for the tested drugs, with an IC50 in the micromolar range, which verified the significant role of non-receptor-mediated mechanism in inhibiting mitochondrial respiration. Effect of stepwise application of THC and AM251 evidenced protective role of AM251 and corroborated the participation of CB1 receptor activation in the inhibition of mitochondrial respiration. We proposed a model, which includes both receptor- and non-receptor-mediated mechanisms of cannabinoid action on mitochondrial respiration. This model explains both the inhibitory effect of cannabinoids and the protective effect of the CB1 receptor inverse agonist. Topics: Animals; Arachidonic Acids; Benzoxazines; Brain; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoids; Cell Respiration; Dose-Response Relationship, Drug; Dronabinol; Drug Inverse Agonism; Endocannabinoids; Energy Metabolism; Mitochondria; Morpholines; Naphthalenes; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Signal Transduction; Swine | 2014 |
The effects of cannabidiol on the antigen-induced contraction of airways smooth muscle in the guinea-pig.
(-)-Δ(9)-Tetrahydrocannabinol has been demonstrated to have beneficial effects in the airways, but its psychoactive effects preclude its therapeutic use for the treatment of airways diseases. In the present study we have investigated the effects of (-)-cannabidiol, a non-psychoactive component of cannabis for its actions on bronchial smooth muscle in vitro and in vivo. Guinea-pig bronchial smooth muscle contractions induced by exogenously applied spasmogens were measured isometrically. In addition, contractile responses of bronchial smooth muscle from ovalbumin-sensitized guinea-pigs were investigated in the absence or presence of (-)-cannabidiol. Furthermore, the effect of (-)-cannabidiol against ovalbumin-induced airway obstruction was investigated in vivo in ovalbumin-sensitized guinea-pigs. (-)-Cannabidiol did not influence the bronchial smooth muscle contraction induced by carbachol, histamine or neurokinin A. In contrast, (-)-cannabidiol inhibited anandamide- and virodhamine-induced responses of isolated bronchi. A fatty acid amide hydrolase inhibitor, phenylmethanesulfonyl fluoride reversed the inhibitory effect of (-)-cannabidiol on anandamide-induced contractions. In addition, (-)-cannabidiol inhibited the contractile response of bronchi obtained from allergic guinea-pigs induced by ovalbumin. In vivo, (-)-cannabidiol reduced ovalbumin-induced airway obstruction. In conclusion, our results suggest that cannabidiol can influence antigen-induced airway smooth muscle tone suggesting that this molecule may have beneficial effects in the treatment of obstructive airway disorders. Topics: Airway Obstruction; Animals; Arachidonic Acids; Bronchi; Cannabidiol; Cannabinoids; Carbachol; Endocannabinoids; Female; Guinea Pigs; Histamine; In Vitro Techniques; Male; Muscle Contraction; Muscle, Smooth; Neurokinin A; Ovalbumin; Phenylmethylsulfonyl Fluoride; Polyunsaturated Alkamides | 2013 |
Do cannabinoids exhibit a tyramine-like effect?
The major constituent of the cannabis plant, Δ(9)-tetrahydrocannabinol, has stimulatory and depressant effects on cardiovascular functions. There is evidence from an in vivo study on the urethane-anaesthetized rat that part of the stimulatory effects is related to a tyramine-like activity. In the present study, we examined whether Δ(9)-tetrahydrocannabinol induces carrier-mediated noradrenaline release in vitro. The study was extended to another phytocannabinoid, cannabidiol, to the synthetic cannabinoids CP 55,940 and WIN 55,212-2 and to the endocannabinoids anandamide and 2-arachidonoyl glycerol. Tissue pieces of the renal cortex from the mouse and the rat were preincubated with (3)H-noradrenaline and superfused. The effect of the cannabinoids on basal (3)H-noradrenaline release was studied. Tyramine served as a positive control. In the mouse kidney, basal (3)H-noradrenaline release was increased by tyramine 0.1, 1 and 10 μM by 39, 91 and 212 %, respectively, and, in the rat kidney, (3)H-noradrenaline release was increased by tyramine 10 μM by 158 %. All effects were abolished by desipramine 1 μM, an inhibitor of the neuronal noradrenaline transporter. The cannabinoids at 0.1, 1 and 10 μM (CP 55,940 at 0.1, 1 and 3.2 μM) did not affect (3)H-noradrenaline release in the mouse kidney. The highest concentration of the cannabinoids (10 μM and in the case of CP 55,940 3.2 μM) also failed to affect (3)H-noradrenaline release in the rat kidney. In conclusion, the cannabinoids Δ(9)-tetrahydrocannabinol, cannabidiol, CP 55,940, WIN 55,212-2, anandamide and 2-arachidonoyl glycerol do not possess a tyramine-like effect on noradrenaline release. Topics: Adrenergic Uptake Inhibitors; Animals; Arachidonic Acids; Benzoxazines; Cannabidiol; Cannabinoids; Cyclohexanols; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Glycerides; Kidney Cortex; Male; Mice; Mice, Inbred C57BL; Morpholines; Naphthalenes; Norepinephrine; Norepinephrine Plasma Membrane Transport Proteins; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Time Factors; Tyramine | 2013 |
Cannabinoids alter endothelial function in the Zucker rat model of type 2 diabetes.
Circulating levels of anandamide are increased in diabetes, and cannabidiol ameliorates a number of pathologies associated with diabetes. The aim of the present study was to examine how exposure to anandamide or cannabidiol might affect endothelial dysfunction associated with Zucker Diabetic Fatty rats. Age-matched Zucker Diabetic Fatty and Zucker lean rats were killed by cervical dislocation and their arteries mounted on a myograph at 37 °C. Arteries were incubated for 2h with anandamide, cannabidiol or vehicle, contracted, and cumulative concentration-response curves to acetylcholine were constructed. Anandamide (10 µM, 2h) significantly improved the vasorelaxant responses to acetylcholine in aortae and femoral arteries from Zucker Diabetic Fatty rats but not Zucker lean rats. By contrast, anandamide (1 µM, 2h) significantly blunted acetylcholine-induced vasorelaxation in third-order mesenteric arteries (G3) from Zucker Diabetic Fatty rats. Cannabidiol incubation (10 µM, 2h) improved acetylcholine responses in the arteries of Zucker Diabetic Fatty rats (aorta and femoral) and Zucker lean (aorta, femoral and G3 mesenteric), and this effect was greater in the Zucker Diabetic Fatty rat. These studies suggest that increased circulating endocannabinoids may alter vascular function both positively and negatively in type 2 diabetes, and that part of the beneficial effect of cannabidiol in diabetes may be due to improved endothelium-dependent vasorelaxation. Topics: Animals; Aorta, Thoracic; Arachidonic Acids; Cannabidiol; Diabetes Mellitus, Type 2; Disease Models, Animal; Endocannabinoids; Endothelium, Vascular; Femoral Artery; Male; Mesenteric Arteries; Polyunsaturated Alkamides; Rats; Rats, Zucker; Vasodilation | 2013 |
Endocannabinoids in nervous system health and disease: the big picture in a nutshell.
The psychoactive component of the cannabis resin and flowers, delta9-tetrahydrocannabinol (THC), was first isolated in 1964, and at least 70 other structurally related 'phytocannabinoid' compounds have since been identified. The serendipitous identification of a G-protein-coupled cannabinoid receptor at which THC is active in the brain heralded an explosion in cannabinoid research. Elements of the endocannabinoid system (ECS) comprise the cannabinoid receptors, a family of nascent lipid ligands, the 'endocannabinoids' and the machinery for their biosynthesis and metabolism. The function of the ECS is thus defined by modulation of these receptors, in particular, by two of the best-described ligands, 2-arachidonoyl glycerol and anandamide (arachidonylethanolamide). Research on the ECS has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. Many of the former relate to stress-recovery systems and to the maintenance of homeostatic balance. Among other functions, the ECS is involved in neuroprotection, modulation of nociception, regulation of motor activity, neurogenesis, synaptic plasticity and the control of certain phases of memory processing. In addition, the ECS acts to modulate the immune and inflammatory responses and to maintain a positive energy balance. This theme issue aims to provide the reader with an overview of ECS pharmacology, followed by discussions on the pivotal role of this system in the modulation of neurogenesis in the developing and adult organism, memory processes and synaptic plasticity, as well as in pathological pain and brain ageing. The volume will conclude with discussions that address the proposed therapeutic applications of targeting the ECS for the treatment of neurodegeneration, pain and mental illness. Topics: Arachidonic Acids; Brain; Cannabidiol; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Dronabinol; Electrical Synapses; Endocannabinoids; Glycerides; Humans; Inflammation; Neurodegenerative Diseases; Neurogenesis; Neuroprotective Agents; Nociceptors; Polyunsaturated Alkamides; Receptors, Cannabinoid; Synaptic Transmission | 2012 |
A synthetic cannabinoid, CP55940, inhibits lipopolysaccharide-induced cytokine mRNA expression in a cannabinoid receptor-independent mechanism in rat cerebellar granule cells.
The inflammatory response plays an important role in the pathogenesis of many diseases in the central nervous system. Cannabinoids exhibit diverse pharmacological actions including anti-inflammatory activity. In this study, we tried to elucidate possible effects of cannabinoids on lipopolysaccharide (LPS)-induced expression of inflammatory cytokine mRNAs in rat cerebellar granule cells.. Inhibitory effects of cannabinoids on cytokine induction in cerebellar granule cells were determined by RT-PCR method.. In these cells, both mRNA and protein of cannabinoid receptor 1 (CB(1) ), but not CB(2) , were expressed. LPS (1 µg/ml) produced a marked increase in the induction of inflammatory cytokines, including interleukin-1β, interleukin-6 and tumour necrosis factor-α. CP55940, a synthetic cannabinoid analogue, concentration-dependently inhibited inflammatory cytokine expression induced by LPS. On the other hand, the endocannabinoids 2-arachidonoylglycerol and anandamide were not able to inhibit this inflammatory response. Notably, a CB(1) /CB(2) antagonist NESS0327 (3 µm) did not reverse the inhibition of cytokine mRNA expression induced by CP55940. GPR55, a putative novel cannabinoid receptor, mRNA was also expressed in cerebellar granule cells. Although it has been suggested that G(q) associates with GPR55, cannabinoids including CP55940 did not promote phosphoinositide hydrolysis and consequent elevation of intracellular Ca([2+]) concentration. Furthermore, a putative GPR55 antagonist, cannabidiol, also showed a similar inhibitory effect to that of CP55940.. These results suggest that the synthetic cannabinoid CP55940 negatively modulates cytokine mRNA expression in cerebellar granule cells by a CB and GPR55 receptor-independent mechanism. Topics: Animals; Anti-Inflammatory Agents; Arachidonic Acids; Calcium; Cannabidiol; Cannabinoid Receptor Antagonists; Cannabinoid Receptor Modulators; Cannabinoids; Cerebellum; Cyclohexanols; Cytokines; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Inflammation; Lipopolysaccharides; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger | 2011 |
The non-psychoactive plant cannabinoid, cannabidiol affects cholesterol metabolism-related genes in microglial cells.
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that is clinically used in a 1:1 mixture with the psychoactive cannabinoid Δ(9)-tetrahydrocannabinol (THC) for the treatment of neuropathic pain and spasticity in multiple sclerosis. Our group previously reported that CBD exerts anti-inflammatory effects on microglial cells. In addition, we found that CBD treatment increases the accumulation of the endocannabinoid N-arachidonoyl ethanolamine (AEA), thus enhancing endocannabinoid signaling. Here we proceeded to investigate the effects of CBD on the modulation of lipid-related genes in microglial cells. Cell viability was tested using FACS analysis, AEA levels were measured using LC/MS/MS, gene array analysis was validated with real-time qPCR, and cytokine release was measured using ELISA. We report that CBD significantly upregulated the mRNAs of the enzymes sterol-O-acyl transferase (Soat2), which synthesizes cholesteryl esters, and of sterol 27-hydroxylase (Cyp27a1). In addition, CBD increased the mRNA of the lipid droplet-associated protein, perilipin2 (Plin2). Moreover, we found that pretreatment of the cells with the cholesterol chelating agent, methyl-β-cyclodextrin (MBCD), reversed the CBD-induced increase in Soat2 mRNA but not in Plin2 mRNA. Incubation with AEA increased the level of Plin2, but not of Soat2 mRNA. Furthermore, MBCD treatment did not affect the reduction by CBD of the LPS-induced release of the proinflammatory cytokine IL-1β. CBD treatment modulates cholesterol homeostasis in microglial cells, and pretreatment with MBCD reverses this effect without interfering with CBD's anti-inflammatory effects. The effects of the CBD-induced increase in AEA accumulation on lipid-gene expression are discussed. Topics: Animals; Arachidonic Acids; beta-Cyclodextrins; Cannabidiol; Cell Death; Cell Line; Cholesterol; Culture Media, Serum-Free; Dronabinol; Endocannabinoids; Gene Expression Regulation; Interleukin-1beta; Lipid Metabolism; Lipopolysaccharides; Mice; Microglia; Oligonucleotide Array Sequence Analysis; Plants; Polyunsaturated Alkamides; RNA, Messenger; Time Factors | 2011 |
A cannabinoid receptor, sensitive to O-1918, is involved in the delayed hypotension induced by anandamide in anaesthetized rats.
Intravenous injection of the endocannabinoid anandamide induces complex cardiovascular changes via cannabinoid CB(1), CB(2) and vanilloid TRPV1 receptors. Recently, evidence has been accumulating that in vitro, but not in vivo, anandamide relaxes blood vessels, via an as yet unidentified, non-CB(1) vascular cannabinoid receptor, sensitive to O-1918 (1,3-dimethoxy-5-2-[(1R,6R)-3-methyl-6-(1-methylethenyl)-2-cyclohexen-1-yl]-benzene). We here examined whether the anandamide-induced hypotension in urethane-anaesthetized rats was also mediated via a non-CB(1) vascular cannabinoid receptor.. Effects of two antagonists (O-1918 and cannabidiol) of the non-CB(1) vascular cannabinoid receptor on anandamide-induced changes in mean, systolic and diastolic blood pressure (MBP, SBP, DBP), mesenteric (MBF) and renal (RBF) blood flow and heart rate (HR) in urethane-anaesthetized rats was examined.. In anaesthetized rats, anandamide (1.5-3 micromol.kg(-1)) and its stable analogue methanandamide (0.5 micromol.kg(-1)) caused a delayed and prolonged decrease in MBP, SBP, DBP, MBF and RBF by about 10-30% of the respective basal values without changing HR. In pithed rats, anandamide (3 micromol.kg(-1)) decreased blood pressure by about 15-20% of the basal value without affecting HR, MBF and RBF. All vascular changes were reduced by about 30-70% by cannabidiol and O-1918 (3 micromol.kg(-1), each).. Non-CB(1) cannabinoid vascular receptors, sensitive to O-1918, contribute to the hypotensive effect of anandamide in anaesthetized rats. Activation of these receptors may be therapeutically important as the endocannabinoid system could be activated as a compensatory mechanism in various forms of hypertension. Topics: Anesthesia; Animals; Anisoles; Arachidonic Acids; Blood Pressure; Cannabidiol; Cannabinoid Receptor Antagonists; Cyclohexanes; Endocannabinoids; Hypotension; Male; Polyunsaturated Alkamides; Rats; Rats, Wistar; Renal Circulation; Splanchnic Circulation | 2010 |
The orphan receptor GPR55 is a novel cannabinoid receptor.
The endocannabinoid system functions through two well characterized receptor systems, the CB1 and CB2 receptors. Work by a number of groups in recent years has provided evidence that the system is more complicated and additional receptor types should exist to explain ligand activity in a number of physiological processes.. Cells transfected with the human cDNA for GPR55 were tested for their ability to bind and to mediate GTPgammaS binding by cannabinoid ligands. Using an antibody and peptide blocking approach, the nature of the G-protein coupling was determined and further demonstrated by measuring activity of downstream signalling pathways.. We demonstrate that GPR55 binds to and is activated by the cannabinoid ligand CP55940. In addition endocannabinoids including anandamide and virodhamine activate GTPgammaS binding via GPR55 with nM potencies. Ligands such as cannabidiol and abnormal cannabidiol which exhibit no CB1 or CB2 activity and are believed to function at a novel cannabinoid receptor, also showed activity at GPR55. GPR55 couples to Galpha13 and can mediate activation of rhoA, cdc42 and rac1.. These data suggest that GPR55 is a novel cannabinoid receptor, and its ligand profile with respect to CB1 and CB2 described here will permit delineation of its physiological function(s). Topics: Amino Acid Sequence; Animals; Arachidonic Acids; Binding Sites; Binding, Competitive; Cannabidiol; Cannabinoids; Cell Line; Cloning, Molecular; Cyclohexanols; Down-Regulation; Endocannabinoids; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Ligands; Mice; Molecular Sequence Data; Organ Specificity; Polymerase Chain Reaction; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, G-Protein-Coupled; RNA, Messenger; Signal Transduction; Structure-Activity Relationship | 2007 |
Interactions of cannabidiol with endocannabinoid signalling in hippocampal tissue.
The phytocannabinoid cannabidiol (CBD) possesses no psychotropic activity amid potentially beneficial therapeutic applications. We here characterized interactions between CBD (1 microM) and the endocannabinoid system in cultured rat hippocampal cells. The CBD-induced Ca2+ rise observed in neurons and glia was markedly reduced in the presence of the endogenous cannabinoid anandamide in neurons, with no alteration seen in glia. Neuronal CBD responses were even more reduced in the presence of the more abundant endocannabinoid 2-arachidonyl glycerol, this action was maintained in the presence of the CB1 receptor antagonist AM281 (100 nM). Neuronal CBD responses were also reduced by pre-exposure to glutamate, expected to increase endocannabinoid levels by increasing in [Ca2+]i. Application of AM281 at 1 microM elevated CBD-induced Ca2+ responses in both cell types, further confirming our finding that endocannabinoid-mediated signalling is negatively coupled to the action of CBD. However, upregulation of endogenous levels of endocannabinoids via inhibition of endocannabinoid hydrolysis (with URB597 and MAFP) could not be achieved under resting conditions. Because delta9-tetrahydrocannabinol did not mimic the endocannabinoid actions, and pertussis toxin treatment had no effect on CBD responses, we propose that the effects of AM281 were mediated via a constitutively active signalling pathway independent of CB1 signalling. Instead, signalling via G(q/11) and phospholipase C appears to be negatively coupled to CBD-induced Ca2+ responses, as the inhibitor U73122 enhanced CBD responses. Our data highlight the interaction between exogenous and endogenous cannabinoid signalling, and provide evidence for the presence of an additional pharmacological target, sensitive to endocannabinoids and to AM281. Topics: Animals; Arachidonic Acids; Benzamides; Calcium; Cannabidiol; Cannabinoid Receptor Modulators; Carbamates; Cells, Cultured; Dronabinol; Endocannabinoids; Estrenes; Glutamic Acid; Glycerides; Hippocampus; Humans; Morpholines; Pertussis Toxin; Phosphodiesterase Inhibitors; Polyunsaturated Alkamides; Pyrazoles; Pyrrolidinones; Rats; Receptor, Cannabinoid, CB1; Signal Transduction | 2007 |
Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats.
Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and cannabidiol (CBD) are two major constituents of Cannabis sativa. Delta(9)-THC modulates sleep, but no clear evidence on the role of CBD is available. In order to determine the effects of CBD on sleep, it was administered intracerebroventricular (icv) in a dose of 10 microg/5 microl at the beginning of either the lights-on or the lights-off period. We found that CBD administered during the lights-on period increased wakefulness (W) and decreased rapid eye movement sleep (REMS). No changes on sleep were observed during the dark phase. Icv injections of CBD (10 microg/5microl) induced an enhancement of c-Fos expression in waking-related brain areas such as hypothalamus and dorsal raphe nucleus (DRD). Microdialysis in unanesthetized rats was carried out to characterize the effects of icv administration of CBD (10 microg/5 microl) on extracellular levels of dopamine (DA) within the nucleus accumbens. CBD induced an increase in DA release. Finally, in order to test if the waking properties of CBD could be blocked by the sleep-inducing endocannabinoid anandamide (ANA), animals received ANA (10 microg/2.5 microl, icv) followed 15 min later by CBD (10 microg/2.5 microl). Results showed that the waking properties of CBD were not blocked by ANA. In conclusion, we found that CBD modulates waking via activation of neurons in the hypothalamus and DRD. Both regions are apparently involved in the generation of alertness. Also, CBD increases DA levels as measured by microdialysis and HPLC procedures. Since CBD induces alertness, it might be of therapeutic value in sleep disorders such as excessive somnolence. Topics: Animals; Arachidonic Acids; Cannabidiol; Dopamine; Endocannabinoids; Hypothalamus; Injections, Intraventricular; Male; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-fos; Raphe Nuclei; Rats; Rats, Wistar; Sleep; Wakefulness | 2006 |
Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism.
Cannabidiol has been reported to be a neuroprotectant, but the neuroprotective mechanism of cannabidiol remains unclear. We studied the neuroprotective mechanism of cannabidiol in 4-hour middle cerebral artery (MCA) occlusion mice.. Male MCA occluded mice were treated with cannabidiol, abnormal cannabidiol, anandamide, methanandamide, cannabidiol plus capsazepine, and cannabidiol plus WAY100135 before and 3 hours after MCA occlusion. The infarct size was determined after 24 hours (2,3,5-triphenyltetrazolium chloride staining). Cerebral blood flow (CBF) was measured at, before and 1, 2, 3, and 4 hours after MCA occlusion.. Cannabidiol significantly reduced the infarct volume induced by MCA occlusion in a bell-shaped curve. Similarly, abnormal cannabidiol but not anandamide or methanandamide reduced the infarct volume. Moreover, the neuroprotective effect of cannabidiol was inhibited by WAY100135, a serotonin 5-hydroxytriptamine1A (5-HT1A) receptor antagonist but not capsazepine a vanilloid receptor antagonist. Cannabidiol increased CBF to the cortex, and the CBF was partly inhibited by WAY100135 in mice subjected to MCA occlusion.. Cannabidiol and abnormal cannabidiol reduced the infarct volume. Furthermore, the neuroprotective effect of cannabidiol was inhibited by WAY100135 but not capsazepine, and the CBF increased by cannabidiol was partially reversed by WAY100135. These results suggested that the neuroprotective effect of cannabidiol may be related to the increase in CBF through the serotonergic 5-HT1A receptor. Topics: Animals; Arachidonic Acids; Cannabidiol; Cerebral Infarction; Cerebrovascular Circulation; Endocannabinoids; Infarction, Middle Cerebral Artery; Male; Mice; Neuroprotective Agents; Piperazines; Polyunsaturated Alkamides; Receptor, Serotonin, 5-HT1A; Resorcinols; Serotonin 5-HT1 Receptor Antagonists; Serotonin Antagonists | 2005 |
Cannabidiol lacks the vanilloid VR1-mediated vasorespiratory effects of capsaicin and anandamide in anaesthetised rats.
The results of vasorespiratory studies in rats anaesthetised with pentobarbital show that (+/-) cannabidiol, a cannabinoid that lacks psychotropic actions and is inactive at cannabinoid (CB) receptors, does not affect respiration or blood pressure when injected (1-2000 microg; 3.2-6360 nmol i.a.). Cannabidiol in doses up to 2 mg (6360 nmol) i.a. or i.v. did not affect the fall in mean blood pressure or the increase in ventilation (respiratory minute volume) caused by capsaicin and high doses of anandamide, responses that are mediated by activation of vanilloid VR1 (TRPV1) receptors in this species. Similar results were obtained with (-) cannabidiol (30-100 microg i.a.; 95-318 nmol). It has previously been shown using human embryonic kidney (HEK) cells over-expressing vanilloid human VR1 (hVR1) receptors that cannabidiol is a full agonist at vanilloid VR1 receptors in vitro. However, in the intact rat cannabidiol lacked vanilloid VR1 receptor agonist effects. We conclude that there are substantial functional differences between human and rat vanilloid VR1 receptors with respect to the actions of cannabidiol as an agonist at vanilloid VR1 receptors. Studies in vivo show that cannabidiol lacks any significant effect on mean blood pressure or respiratory minute volume when injected i.a. or i.v., and that this cannabinoid does not modulate the vanilloid VR1 receptor-mediated cardiovascular and ventilatory changes reflexly evoked by capsaicin or anandamide in rats anaesthetised with pentobarbital. Topics: Anesthesia; Animals; Arachidonic Acids; Blood Pressure; Cannabidiol; Capsaicin; Dose-Response Relationship, Drug; Endocannabinoids; Hyperventilation; Hypotension; Male; Polyunsaturated Alkamides; Pulmonary Ventilation; Rats; Rats, Wistar; Receptors, Drug | 2004 |
Neuroscience. Stout guards of the central nervous system.
Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy. Topics: Animals; Anticonvulsants; Arachidonic Acids; Brain; Brain Diseases; Cannabidiol; Cannabinoid Receptor Modulators; Cannabinoids; Convulsants; Dronabinol; Endocannabinoids; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Glycerides; Humans; Kainic Acid; Mice; Neurons; Neuroprotective Agents; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid; Receptors, Drug; Signal Transduction | 2003 |
Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide.
1. (-)-Cannabidiol (CBD) is a non-psychotropic component of Cannabis with possible therapeutic use as an anti-inflammatory drug. Little is known on the possible molecular targets of this compound. We investigated whether CBD and some of its derivatives interact with vanilloid receptor type 1 (VR1), the receptor for capsaicin, or with proteins that inactivate the endogenous cannabinoid, anandamide (AEA). 2. CBD and its enantiomer, (+)-CBD, together with seven analogues, obtained by exchanging the C-7 methyl group of CBD with a hydroxy-methyl or a carboxyl function and/or the C-5' pentyl group with a di-methyl-heptyl (DMH) group, were tested on: (a) VR1-mediated increase in cytosolic Ca(2+) concentrations in cells over-expressing human VR1; (b) [(14)C]-AEA uptake by RBL-2H3 cells, which is facilitated by a selective membrane transporter; and (c) [(14)C]-AEA hydrolysis by rat brain membranes, which is catalysed by the fatty acid amide hydrolase. 3. Both CBD and (+)-CBD, but not the other analogues, stimulated VR1 with EC(50)=3.2 - 3.5 microM, and with a maximal effect similar in efficacy to that of capsaicin, i.e. 67 - 70% of the effect obtained with ionomycin (4 microM). CBD (10 microM) desensitized VR1 to the action of capsaicin. The effects of maximal doses of the two compounds were not additive. 4. (+)-5'-DMH-CBD and (+)-7-hydroxy-5'-DMH-CBD inhibited [(14)C]-AEA uptake (IC(50)=10.0 and 7.0 microM); the (-)-enantiomers were slightly less active (IC(50)=14.0 and 12.5 microM). 5. CBD and (+)-CBD were also active (IC(50)=22.0 and 17.0 microM). CBD (IC(50)=27.5 microM), (+)-CBD (IC(50)=63.5 microM) and (-)-7-hydroxy-CBD (IC(50)=34 microM), but not the other analogues (IC(50)>100 microM), weakly inhibited [(14)C]-AEA hydrolysis. 6. Only the (+)-isomers exhibited high affinity for CB(1) and/or CB(2) cannabinoid receptors. 7. These findings suggest that VR1 receptors, or increased levels of endogenous AEA, might mediate some of the pharmacological effects of CBD and its analogues. In view of the facile high yield synthesis, and the weak affinity for CB(1) and CB(2) receptors, (-)-5'-DMH-CBD represents a valuable candidate for further investigation as inhibitor of AEA uptake and a possible new therapeutic agent. Topics: Amidohydrolases; Arachidonic Acids; Binding, Competitive; Biological Transport; Calcium; Cannabidiol; Capsaicin; Cell Line; Cell Membrane; Cytosol; Dose-Response Relationship, Drug; Endocannabinoids; Gene Expression; Humans; Hydrolysis; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug | 2001 |
A 3D-QSAR study on the structural requirements for binding to CB(1) and CB(2) cannabinoid receptors.
A 3D-QSAR study was carried out on 20 cannabinoids for which the binding affinities (K(i)) with respect to CB(1) and CB(2) receptors, determined in the same cell line, were available. For the first time three series of significantly different chemical structures such as Delta(9)-THC analogues, anandamides, and indoles were included in a single 3D-QSAR model, to obtain information on the interactions of all ligands with both CB(1) and CB(2) receptors and on their receptor selectivity. Delta(9)-THC was chosen as the structural template for alignment. The 3D-structure-activity correlation obtained by the GOLPE procedure provided a partial least squares (PLS) model with a very good predictive ability for the CB(1) receptor affinity of all compounds. The model allowed us to identify seven different regions in the space that contribute to explain the above binding affinities. External validation of the interpretation of the 3D-QSAR model was derived from a response-independent procedure such as principal components analysis (PCA). The CB(2) receptor model evidenced, besides the seven regions found for the CB(1) receptor, a new characteristic region for the CB(2) receptor. Another PCA, using 10 GRID probes, provided further evidence of receptor selectivity regions. One region opposite to the amidic NH of CB(1) selective O585 appears to be responsible for the CB(1) selectivity, while an interaction region opposite to the carbonyl of CB(2) selective JWH-015 appears to be involved in the CB(2) binding selectivity. Topics: Arachidonic Acids; Cannabinoids; Drug Design; Endocannabinoids; Indoles; Ligands; Models, Biological; Models, Molecular; Polyunsaturated Alkamides; Receptors, Cannabinoid; Receptors, Drug; Structure-Activity Relationship | 2000 |
Cannabinoid-induced mesenteric vasodilation through an endothelial site distinct from CB1 or CB2 receptors.
Cannabinoids, including the endogenous ligand arachidonyl ethanolamide (anandamide), elicit not only neurobehavioral but also cardiovascular effects. Two cannabinoid receptors, CB1 and CB2, have been cloned, and studies with the selective CB1 receptor antagonist SR141716A have implicated peripherally located CB1 receptors in the hypotensive action of cannabinoids. In rat mesenteric arteries, anandamide-induced vasodilation is inhibited by SR141716A, but other potent CB1 receptor agonists, such as HU-210, do not cause vasodilation, which implicates an as-yet-unidentified receptor in this effect. Here we show that "abnormal cannabidiol" (Abn-cbd) is a neurobehaviorally inactive cannabinoid that does not bind to CB1 receptors, yet causes SR141716A-sensitive hypotension and mesenteric vasodilation in wild-type mice and in mice lacking CB1 receptors or both CB1 and CB2 receptors. Hypotension by Abn-cbd is also inhibited by cannabidiol (20 microgram/g), which does not influence anandamide- or HU-210-induced hypotension. In the rat mesenteric arterial bed, Abn-cbd-induced vasodilation is unaffected by blockade of endothelial NO synthase, cyclooxygenase, or capsaicin receptors, but it is abolished by endothelial denudation. Mesenteric vasodilation by Abn-cbd, but not by acetylcholine, sodium nitroprusside, or capsaicine, is blocked by SR141716A (1 microM) or by cannabidiol (10 microM). Abn-cbd-induced vasodilation is also blocked in the presence of charybdotoxin (100 nM) plus apamin (100 nM), a combination of K(+)-channel toxins reported to block the release of an endothelium-derived hyperpolarizing factor (EDHF). These findings suggest that Abn-cbd and cannabidiol are a selective agonist and antagonist, respectively, of an as-yet-unidentified endothelial receptor for anandamide, activation of which elicits NO-independent mesenteric vasodilation, possibly by means of the release of EDHF. Topics: Animals; Arachidonic Acids; Cannabidiol; Cannabinoids; Dronabinol; Endocannabinoids; Endothelium, Vascular; Mesenteric Arteries; Mice; Mice, Inbred C57BL; Mice, Inbred ICR; Mice, Knockout; Nitric Oxide; Piperidines; Polyunsaturated Alkamides; Potassium Channels; Prostaglandin-Endoperoxide Synthases; Pyrazoles; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, Drug; Rimonabant; Vasodilation; Vasodilator Agents | 1999 |
The preimplantation mouse embryo is a target for cannabinoid ligand-receptor signaling.
Using a reverse transcription-coupled PCR, we demonstrated that both brain and spleen type cannabinoid receptor (CB1-R and CB2-R, respectively) mRNAs are expressed in the preimplantation mouse embryo. The CB1-R mRNA expression was coincident with the activation of the embryonic genome late in the two-cell stage, whereas the CB2-R mRNA was present from the one-cell through the blastocyst stages. The major psychoactive component of marijuana (-)-delta-9-tetrahydrocannabinol [(-)-THC] inhibited forskolin-stimulated cAMP generation in the blastocyst, and this inhibition was prevented by pertussis toxin. However, the inactive cannabinoid cannabidiol (CBD) failed to influence this response. These results suggest that cannabinoid receptors in the embryo are coupled to inhibitory guanine nucleotide binding proteins. Further, the oviduct and uterus exhibited the enzymatic capacity to synthesize the putative endogenous cannabinoid ligand arachidonylethanolamide (anandamide). Synthetic and natural cannabinoid agonists [WIN 55,212-2, CP 55,940, (-)-THC, and anandamide], but not CBD or arachidonic acid, arrested the development of two-cell embryos primarily between the four-cell and eight-cell stages in vitro in a dose-dependent manner. Anandamide also interfered with the development of eight-cell embryos to blastocysts in culture. The autoradiographic studies readily detected binding of [3H]anandamide in embryos at all stages of development. Positive signals were present in one-cell embryos and all blastomeres of two-cell through four-cell embryos. However, most of the binding sites in eight-cell embryos and morulae were present in the outer cells. In the blastocyst, these signals were primarily localized in the mural trophectoderm with low levels of signals in the polar trophectoderm, while little or no signals were noted in inner cell mass cells. These results establish that the preimplantation mouse embryo is a target for cannabinoid ligands. Consequently, many of the adverse effects of cannabinoids observed during pregnancy could be mediated via these cannabinoid receptors. Although the physiological significance of the cannabinoid ligand-receptor signaling in normal preimplantation embryo development is not yet clear, the regulation of embryonic cAMP and/or Ca2+ levels via this signaling pathway may be important for normal embryonic development and/or implantation. Topics: Animals; Arachidonic Acids; Base Sequence; Binding Sites; Blastocyst; Cannabidiol; Cannabinoids; Colforsin; Cyclic AMP; Dronabinol; Endocannabinoids; Fallopian Tubes; Female; Hallucinogens; Mice; Molecular Sequence Data; Polyunsaturated Alkamides; Pregnancy; Receptors, Cannabinoid; Receptors, Drug; RNA, Messenger; Signal Transduction; Uterus | 1995 |
Cannabinoid ligand-receptor signaling in the mouse uterus.
Using RNA (Northern) blot hybridization and reverse transcription-PCR, we demonstrate that the brain-type cannabinoid receptor (CB1-R) mRNA, but not the spleen-type cannabinoid receptor (CB2-R) mRNA, is expressed in the mouse uterus and that this organ has the capacity to synthesize the putative endogenous cannabinoid ligand, anandamide (arachidonylethanolamide). The psychoactive cannabinoid component of marijuana--delta 9-tetrahydrocannabinol (THC)--or anandamide, but not the inactive and nonpsychoactive cannabidiol (CBD), inhibited forskolin-stimulated cyclic AMP formation in the mouse uterus, which was prevented by pertussis toxin pretreatment. These results suggest that uterine CB1-R is coupled to inhibitory guanine nucleotide-binding protein and is biologically active. Autoradiographic studies identified ligand binding sites ([3H]anandamide) in the uterine epithelium and stromal cells, suggesting that these cells are perhaps the targets for cannabinoid action. Scatchard analysis of the binding of [3H]WIN 55212-2, another cannabinoid receptor ligand, showed a single class of high-affinity binding sites in the endometrium with an apparent Kd of 2.4 nM and Bmax of 5.4 x 10(9) molecules per mg of protein. The gene encoding lactoferrin is an estrogen-responsive gene in the mouse uterus that was rapidly and transiently up-regulated by THC, but not by CBD, in ovariectomized mice in the absence of ovarian steroids. This effect, unlike that of 17 beta-estradiol (E2), was not influenced by a pure antiestrogen, ICI 182780, suggesting that the THC-induced uterine lactoferrin gene expression does not involve estrogen receptors. We propose that the uterus is a new target for cannabinoid ligand-receptor signaling. Topics: Animals; Arachidonic Acids; Autoradiography; Base Sequence; Blotting, Northern; Calcium Channel Blockers; Cannabidiol; Cannabinoids; Cannabis; Colforsin; Cyclic AMP; DNA Primers; Dronabinol; Endocannabinoids; Female; Gene Expression; GTP-Binding Proteins; Mice; Mice, Inbred Strains; Molecular Sequence Data; Pertussis Toxin; Polymerase Chain Reaction; Polyunsaturated Alkamides; Pregnancy; Receptors, Cannabinoid; Receptors, Drug; RNA, Messenger; Signal Transduction; Tritium; Uterus; Virulence Factors, Bordetella | 1995 |
The effect of cannabidiol on mouse hepatic microsomal cytochrome P450-dependent anandamide metabolism.
Anandamide (arachidonylethanolamide) has been identified as a brain constituent that selectively binds to the cannabinoid receptor and possesses cannabimimetic activity. Cytochromes P450 catalyze the oxidation of arachidonic acid to several metabolites possessing very potent pharmacological activity. We examined whether P450 would also metabolize anandamide, and whether cannabidiol (a cannabinoid which inactivates several P450s) would affect this metabolism. Mouse hepatic P450s were found to metabolize anandamide to at least 10 different metabolites, four of which were characterized by mass spectrometry. Cannabidiol selectively inhibited the formation of two of these four anandamide metabolites. The significance of anandamide metabolism remains to be explored. Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Biotransformation; Calcium Channel Blockers; Cannabidiol; Chromatography, High Pressure Liquid; Cytochrome P-450 Enzyme System; Endocannabinoids; Fatty Acids, Unsaturated; Male; Mice; Mice, Inbred Strains; Microsomes, Liver; Mixed Function Oxygenases; Polyunsaturated Alkamides; Spectrophotometry | 1993 |