candesartan has been researched along with montelukast in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (28.57) | 29.6817 |
2010's | 3 (42.86) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
Authors | Studies |
---|---|
Andricopulo, AD; Moda, TL; Montanari, CA | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K | 1 |
Koyabu, N; Kuwano, M; Murakami, H; Nakamura, T; Ohtani, H; Satoh, H; Sawada, Y; Tsujimoto, M; Uchiumi, T; Ushigome, F; Yamashita, F | 1 |
Ma, C; Wang, J | 1 |
Huang, YY; Li, Z; Lin, Y; Liu, R; Luo, HB; Wang, X; Zhan, CG | 1 |
1 review(s) available for candesartan and montelukast
Article | Year |
---|---|
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk | 2016 |
6 other study(ies) available for candesartan and montelukast
Article | Year |
---|---|
Hologram QSAR model for the prediction of human oral bioavailability.
Topics: Administration, Oral; Biological Availability; Holography; Humans; Models, Biological; Models, Molecular; Molecular Structure; Pharmaceutical Preparations; Pharmacokinetics; Quantitative Structure-Activity Relationship | 2007 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Inhibitory effects of angiotensin II receptor antagonists and leukotriene receptor antagonists on the transport of human organic anion transporter 4.
Topics: Acetates; Angiotensin II Type 1 Receptor Blockers; Benzimidazoles; Biological Transport; Biphenyl Compounds; Blotting, Western; Cell Line; Chromones; Cyclopropanes; Dose-Response Relationship, Drug; Estrone; Humans; Imidazoles; Indoles; Leukotriene Antagonists; Losartan; Molecular Structure; Organic Anion Transporters, Sodium-Independent; Phenylcarbamates; Quinolines; Structure-Activity Relationship; Sulfides; Sulfonamides; Tetrazoles; Tosyl Compounds; Transfection; Tritium; Valine; Valsartan | 2006 |
Dipyridamole, chloroquine, montelukast sodium, candesartan, oxytetracycline, and atazanavir are not SARS-CoV-2 main protease inhibitors.
Topics: Acetates; Atazanavir Sulfate; Benzimidazoles; Biphenyl Compounds; Chloroquine; COVID-19 Drug Treatment; Cyclopropanes; Dipyridamole; Humans; Oxytetracycline; Pharmaceutical Preparations; Protease Inhibitors; Quinolines; SARS-CoV-2; Sulfides; Tetrazoles | 2021 |
Reply to Ma and Wang: Reliability of various in vitro activity assays on SARS-CoV-2 main protease inhibitors.
Topics: Acetates; Atazanavir Sulfate; Benzimidazoles; Biphenyl Compounds; Chloroquine; COVID-19 Drug Treatment; Cyclopropanes; Dipyridamole; Humans; Oxytetracycline; Protease Inhibitors; Quinolines; Reproducibility of Results; SARS-CoV-2; Sulfides; Tetrazoles | 2021 |