candesartan has been researched along with ag-490 in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Benedict, CR; Katagiri, T; Pakala, R; Watanabe, T | 1 |
Amiri, F; Banes, AK; Jenkins, J; Marrero, MB; Pollock, DM; Redd, H; Shaw, S | 1 |
Banes-Berceli, AK; Ketsawatsomkron, P; Marrero, MB; Ogbi, S; Patel, B; Pollock, DM | 1 |
3 other study(ies) available for candesartan and ag-490
Article | Year |
---|---|
Mildly oxidized low-density lipoprotein acts synergistically with angiotensin II in inducing vascular smooth muscle cell proliferation.
Topics: Acetylcysteine; Aldehydes; Angiotensin II; Angiotensin Receptor Antagonists; Animals; Antioxidants; Benzimidazoles; Biphenyl Compounds; Cardiovascular Diseases; Cell Division; Cells, Cultured; DNA; Drug Synergism; Flavonoids; Humans; Hydrogen Peroxide; Lipoproteins, LDL; Lysophosphatidylcholines; Muscle, Smooth, Vascular; Probucol; Rabbits; Receptor, Angiotensin, Type 1; Tetrazoles; Tyrphostins | 2001 |
Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Antihypertensive Agents; Benzimidazoles; Biphenyl Compounds; Diabetic Nephropathies; DNA-Binding Proteins; Enzyme Inhibitors; Hyperglycemia; Intracellular Signaling Peptides and Proteins; Janus Kinase 2; Kidney Glomerulus; Male; Milk Proteins; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Protein Tyrosine Phosphatases; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Signal Transduction; STAT1 Transcription Factor; STAT3 Transcription Factor; STAT5 Transcription Factor; Tetrazoles; Trans-Activators; Transcription, Genetic; Tyrphostins | 2004 |
Angiotensin II and endothelin-1 augment the vascular complications of diabetes via JAK2 activation.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Aorta, Thoracic; Atrasentan; Benzimidazoles; Biphenyl Compounds; Blood Glucose; Blood Pressure; Diabetes Mellitus, Experimental; Diabetic Angiopathies; Endothelin A Receptor Antagonists; Endothelin-1; Enzyme Activation; Intracellular Signaling Peptides and Proteins; Janus Kinase 2; Male; Phosphorylation; Protein Kinase Inhibitors; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Protein Tyrosine Phosphatase, Non-Receptor Type 6; Protein Tyrosine Phosphatases; Pyrrolidines; Rats; Receptor, Angiotensin, Type 1; Receptor, Endothelin A; Signal Transduction; STAT1 Transcription Factor; STAT3 Transcription Factor; Tetrazoles; Time Factors; Tyrphostins; Vasodilation | 2007 |