camptothecin has been researched along with ritonavir in 9 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (33.33) | 29.6817 |
2010's | 5 (55.56) | 24.3611 |
2020's | 1 (11.11) | 2.80 |
Authors | Studies |
---|---|
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A | 1 |
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ | 1 |
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ | 1 |
Jadhav, A; Kerns, E; Nguyen, K; Shah, P; Sun, H; Xu, X; Yan, Z; Yu, KR | 1 |
Kabir, M; Kerns, E; Nguyen, K; Shah, P; Sun, H; Wang, Y; Xu, X; Yu, KR | 1 |
Kabir, M; Kerns, E; Neyra, J; Nguyen, K; Nguyễn, ÐT; Shah, P; Siramshetty, VB; Southall, N; Williams, J; Xu, X; Yu, KR | 1 |
Ieki, R; Iguchi, M; Kato, T; Okamura, T; Ota, T; Saito, E; Shibuya, M; Yuasa, K | 1 |
Cattarossi, G; Corona, G; Sartor, I; Toffoli, G; Vaccher, E | 1 |
Corona, G; Innocenti, F; Sandron, S; Sartor, I; Tirelli, U; Toffoli, G; Vaccher, E | 1 |
9 other study(ies) available for camptothecin and ritonavir
Article | Year |
---|---|
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship | 2010 |
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics | 2010 |
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests | 2013 |
Highly predictive and interpretable models for PAMPA permeability.
Topics: Artificial Intelligence; Caco-2 Cells; Cell Membrane Permeability; Humans; Models, Biological; Organic Chemicals; Regression Analysis; Support Vector Machine | 2017 |
Predictive models of aqueous solubility of organic compounds built on A large dataset of high integrity.
Topics: Drug Discovery; Organic Chemicals; Pharmaceutical Preparations; Solubility | 2019 |
Retrospective assessment of rat liver microsomal stability at NCATS: data and QSAR models.
Topics: Animals; Computer Simulation; Databases, Factual; Drug Discovery; High-Throughput Screening Assays; Liver; Machine Learning; Male; Microsomes, Liver; National Center for Advancing Translational Sciences (U.S.); Pharmaceutical Preparations; Quantitative Structure-Activity Relationship; Rats; Rats, Sprague-Dawley; Retrospective Studies; United States | 2020 |
A long-term survival case of small cell lung cancer in an HIV-infected patient.
Topics: Alkynes; Anti-HIV Agents; Antineoplastic Combined Chemotherapy Protocols; Antiretroviral Therapy, Highly Active; Benzoxazines; Camptothecin; Carbamates; Carboplatin; Carcinoma, Small Cell; Cisplatin; Cyclopropanes; Didanosine; Dideoxynucleosides; Drug Administration Schedule; Furans; HIV Infections; HIV Long-Term Survivors; Humans; Irinotecan; Lung Neoplasms; Male; Middle Aged; Oxazines; Ritonavir; Sulfonamides; Tomography, X-Ray Computed | 2005 |
Potential hazard of pharmacokinetic interactions between lopinavir-ritonavir protease inhibitors and irinotecan.
Topics: Administration, Oral; Adult; Antineoplastic Agents, Phytogenic; Antiretroviral Therapy, Highly Active; Camptothecin; Drug Interactions; HIV Infections; HIV Protease Inhibitors; Humans; Irinotecan; Lopinavir; Male; Pyrimidinones; Ritonavir; Sarcoma, Kaposi | 2005 |
Lopinavir-ritonavir dramatically affects the pharmacokinetics of irinotecan in HIV patients with Kaposi's sarcoma.
Topics: Adenine; Adult; Aged; Anti-HIV Agents; Antineoplastic Agents, Phytogenic; Antiretroviral Therapy, Highly Active; Area Under Curve; Camptothecin; Drug Therapy, Combination; HIV Infections; Humans; Irinotecan; Lamivudine; Lopinavir; Male; Middle Aged; Organophosphonates; Pyrimidinones; Ritonavir; Sarcoma, Kaposi; Tenofovir; White People | 2008 |