camptothecin has been researched along with apigenin in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 5 (71.43) | 29.6817 |
2010's | 2 (28.57) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bilter, GK; Dias, J; Huang, Z; Keon, BH; Lamerdin, J; MacDonald, ML; Michnick, SW; Minami, T; Owens, S; Shang, Z; Westwick, JK; Yu, H | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Austin, CP; Fidock, DA; Hayton, K; Huang, R; Inglese, J; Jiang, H; Johnson, RL; Su, XZ; Wellems, TE; Wichterman, J; Yuan, J | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Cotter, TG; Knox, KA; McGahon, AJ; McKenna, SL; O'Gorman, DM | 1 |
Daidoji, T; Hu, M; Kulkarni, KH; Tang, L; Wang, JR; Wang, SW; Yin, T; Yokota, H | 1 |
Ashcroft, M; Carroll, VA; Moumen, A; Nathawat, K; Selvarajah, J | 1 |
7 other study(ies) available for camptothecin and apigenin
Article | Year |
---|---|
Identifying off-target effects and hidden phenotypes of drugs in human cells.
Topics: Bacterial Proteins; Cell Line; Cell Proliferation; Cluster Analysis; Drug Design; Drug Evaluation, Preclinical; Genetics; Humans; Luminescent Proteins; Molecular Structure; Phenotype; Recombinant Fusion Proteins; Signal Transduction; Structure-Activity Relationship | 2006 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Genetic mapping of targets mediating differential chemical phenotypes in Plasmodium falciparum.
Topics: Animals; Antimalarials; ATP Binding Cassette Transporter, Subfamily B, Member 1; Chromosome Mapping; Crosses, Genetic; Dihydroergotamine; Drug Design; Drug Resistance; Humans; Inhibitory Concentration 50; Mutation; Plasmodium falciparum; Quantitative Trait Loci; Transfection | 2009 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Sensitisation of HL60 human leukaemic cells to cytotoxic drug-induced apoptosis by inhibition of PI3-kinase survival signals.
Topics: Androstadienes; Antineoplastic Agents; Apigenin; Apoptosis; bcl-Associated Death Protein; bcl-X Protein; Camptothecin; Carrier Proteins; Cell Survival; Chromones; Cycloheximide; Dactinomycin; Dimerization; Doxorubicin; Drug Resistance, Neoplasm; Enzyme Inhibitors; Etoposide; Flavonoids; Genes, bcl-2; HL-60 Cells; Humans; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinases; Mitoxantrone; Morpholines; Myeloid Cell Leukemia Sequence 1 Protein; Neoplasm Proteins; Phosphoinositide-3 Kinase Inhibitors; Phosphorylation; Protein Processing, Post-Translational; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-bcl-2; Sirolimus; Wortmannin | 2000 |
Disposition of flavonoids via enteric recycling: UDP-glucuronosyltransferase (UGT) 1As deficiency in Gunn rats is compensated by increases in UGT2Bs activities.
Topics: Animals; Anticholesteremic Agents; Apigenin; Azetidines; Bile; Camptothecin; Enzyme Inhibitors; Ezetimibe; Flavonoids; Genistein; Glucuronic Acid; Glucuronosyltransferase; Indomethacin; Intestinal Absorption; Intestinal Mucosa; Irinotecan; Isoflavones; Liver; Male; Microsomes; Microsomes, Liver; Protein Isoforms; Rats; Rats, Gunn; Rats, Wistar; Recombinant Proteins; Testosterone; Up-Regulation | 2009 |
Chemotherapy-mediated p53-dependent DNA damage response in clear cell renal cell carcinoma: role of the mTORC1/2 and hypoxia-inducible factor pathways.
Topics: Apigenin; Apoptosis; Basic Helix-Loop-Helix Transcription Factors; Camptothecin; Carcinoma, Renal Cell; Cell Hypoxia; Cell Line, Tumor; DNA Damage; Endothelin-1; Gene Expression Regulation, Neoplastic; Humans; Hypoxia-Inducible Factor 1, alpha Subunit; Kidney Neoplasms; Mechanistic Target of Rapamycin Complex 1; Mechanistic Target of Rapamycin Complex 2; Multiprotein Complexes; Protein Biosynthesis; RNA, Messenger; Signal Transduction; TOR Serine-Threonine Kinases; Tumor Suppressor Protein p53 | 2013 |