camalexin and ethylene

camalexin has been researched along with ethylene* in 22 studies

Reviews

1 review(s) available for camalexin and ethylene

ArticleYear
Interplay of signaling pathways in plant disease resistance.
    Trends in genetics : TIG, 2000, Volume: 16, Issue:10

    Plants are under constant threat of infection by pathogens armed with a diverse array of effector molecules to colonize their host. Plants have, in turn, evolved sophisticated detection and response systems that decipher pathogen signals and induce appropriate defenses. Genetic analysis of plant mutants impaired in mounting a resistance response to invading pathogens has uncovered a number of distinct, but interconnecting, signaling networks that are under both positive and negative control. These pathways operate, at least partly, through the action of small signaling molecules such as salicylate, jasmonate and ethylene. The interplay of signals probably allows the plant to fine-tune defense responses in both local and systemic tissue.

    Topics: Acetates; Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Immunity, Innate; Indoles; Oxylipins; Plant Diseases; Plant Physiological Phenomena; Plant Proteins; Plants; Protein Structure, Tertiary; Salicylic Acid; Signal Transduction; Thiazoles

2000

Other Studies

21 other study(ies) available for camalexin and ethylene

ArticleYear
Chemical priming of immunity without costs to plant growth.
    The New phytologist, 2018, Volume: 218, Issue:3

    β-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-β-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.

    Topics: Aminobutyrates; Arabidopsis; Arabidopsis Proteins; Computer Simulation; Disease Resistance; Ethylenes; Fungi; Homoserine; Indoles; Mutation; Plant Development; Plant Diseases; Plant Immunity; Protein Domains; Salicylic Acid; Signal Transduction; Solanum lycopersicum; Thiazoles

2018
Analysis of crystal structure of Arabidopsis MPK6 and generation of its mutants with higher activity.
    Scientific reports, 2016, 05-10, Volume: 6

    Mitogen-activated protein kinase (MAPK) cascades, which are the highly conserved signalling modules in eukaryotic organisms, have been shown to play important roles in regulating growth, development, and stress responses. The structures of various MAPKs from yeast and animal have been solved, and structure-based mutants were generated for their function analyses, however, the structures of plant MAPKs remain unsolved. Here, we report the crystal structure of Arabidopsis MPK6 at a 3.0 Å resolution. Although MPK6 is topologically similar to ERK2 and p38, the structures of the glycine-rich loop, MAPK insert, substrate binding sites, and L16 loop in MPK6 show notable differences from those of ERK2 and p38. Based on the structural comparison, we constructed MPK6 mutants and analyzed their kinase activity both in vitro and in planta. MPK6(F364L) and MPK6(F368L) mutants, in which Phe364 and Phe368 in the L16 loop were changed to Leu, respectively, acquired higher intrinsic kinase activity and retained the normal MAPKK activation property. The expression of MPK6 mutants with basal activity is sufficient to induce camalexin biosynthesis; however, to induce ethylene and leaf senescence, the expression of MPK6 mutants with higher activity is required. The results suggest that these mutants can be used to analyze the specific biological functions of MPK6.

    Topics: Amino Acid Sequence; Arabidopsis; Arabidopsis Proteins; Crystallography, X-Ray; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mitogen-Activated Protein Kinases; Models, Molecular; Mutation; Phosphorylation; Plants, Genetically Modified; Protein Conformation; Recombinant Proteins; Sequence Homology, Amino Acid; Thiazoles

2016
Sustained exposure to abscisic acid enhances the colonization potential of the mutualist fungus Piriformospora indica on Arabidopsis thaliana roots.
    The New phytologist, 2015, Volume: 208, Issue:3

    Root colonization by the beneficial fungus Piriformospora indica is controlled by plant innate immunity, but factors that channel this interaction into a mutualistic relationship are not known. We have explored the impact of abscisic acid (ABA) and osmotic stress on the P. indica interaction with Arabidopsis thaliana. The activation of plant innate immunity in roots was determined by measuring the concentration of the phytoalexin camalexin and expression of transcription factors regulating the biosynthesis of tryptophan-related defence metabolites. Furthermore, the impact of the fungus on the content of ABA, salicylic acid, jasmonic acid (JA) and JA-related metabolites was examined. We demonstrated that treatment with exogenous ABA or the ABA analogue pyrabactin increased fungal colonization efficiency without impairment of plant fitness. Concomitantly, ABA-deficient mutants of A. thaliana (aba1-6 and aba2-1) were less colonized, while plants exposed to moderate stress were more colonized than corresponding controls. Sustained exposure to ABA attenuated expression of transcription factors MYB51, MYB122 and WRKY33 in roots upon P. indica challenge or chitin treatment, and prevented an increase in camalexin content. The results indicate that ABA can strengthen the interaction with P. indica as a consequence of its impact on plant innate immunity. Consequently, ABA will be relevant for the establishment and outcome of the symbiosis under stress conditions.

    Topics: Abscisic Acid; Arabidopsis; Basidiomycota; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Naphthalenes; Osmotic Pressure; Plant Roots; Stress, Physiological; Sulfonamides; Symbiosis; Thiazoles; Tryptophan

2015
Cerato-platanin induces resistance in Arabidopsis leaves through stomatal perception, overexpression of salicylic acid- and ethylene-signalling genes and camalexin biosynthesis.
    PloS one, 2014, Volume: 9, Issue:6

    Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.). On plane tree leaves, the biological activity of CP has been widely studied. Once applied on the leaf surface, CP acts as an elicitor of defence responses. The molecular mechanism by which CP elicits leaves is still unknown, and the protective effect of CP against virulent pathogens has not been clearly demonstrated. In the present study, we tried to address these questions in the model plant Arabidopsis thaliana. Our results suggest that stomata rapidly sense CP since they responded to the treatment with ROS signalling and stomatal closure, and that CP triggers salicylic acid (SA)- and ethylene (ET)-signalling pathways, but not the jasmonic acid (JA)-signalling pathway, as revealed by the expression pattern of 20 marker genes. Among these, EDS1, PAD4, NPR1, GRX480, WRKY70, ACS6, ERF1a/b, COI1, MYC2, PDF1.2a and the pathogenesis-related (PR) genes 1-5. CP rapidly induced MAPK phosphorylation and induced the biosynthesis of camalexin within 12 hours following treatment. The induction of localised resistance was shown by a reduced susceptibility of the leaves to the infection with Botrytis cinerea and Pseudomonas syringae pv. tomato. These results contribute to elucidate the key steps of the signalling process underlying the resistance induction in plants by CP and point out the central role played by the stomata in this process.

    Topics: Arabidopsis; Arabidopsis Proteins; Drug Resistance; Ethylenes; Fungal Proteins; Gene Expression Regulation, Plant; Hydrogen Peroxide; Indoles; Mitogen-Activated Protein Kinases; Phosphorylation; Plant Leaves; Plant Stomata; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Thiazoles

2014
Resistance of Arabidopsis thaliana to the green peach aphid, Myzus persicae, involves camalexin and is regulated by microRNAs.
    The New phytologist, 2013, Volume: 198, Issue:4

    · Small RNAs play important roles in resistance to plant viruses and the complex responses against pathogens and leaf-chewing insects. · We investigated whether small RNA pathways are involved in Arabidopsis resistance against a phloem-feeding insect, the green peach aphid (Myzus persicae). We used a 2-wk fecundity assay to assess aphid performance on Arabidopsis RNA silencing and defence pathway mutants. Quantitative real-time polymerase chain reaction was used to monitor the transcriptional activity of defence-related genes in plants of varying aphid susceptibility. High-performance liquid chromatography-mass spectrometry was employed to measure the accumulation of the antimicrobial compound camalexin. Artificial diet assays allowed the assessment of the effect of camalexin on aphid performance. · Myzus persicae produces significantly less progeny on Arabidopsis microRNA (miRNA) pathway mutants. Plants unable to process miRNAs respond to aphid infestation with increased induction of PHYTOALEXIN DEFICIENT3 (PAD3) and production of camalexin. Aphids ingest camalexin when feeding on Arabidopsis and are more successful on pad3 and cyp79b2/cyp79b3 mutants defective in camalexin production. Aphids produce less progeny on artificial diets containing camalexin. · Our data indicate that camalexin functions beyond antimicrobial defence to also include hemipteran insects. This work also highlights the extensive role of the miRNA-mediated regulation of secondary metabolic defence pathways with relevance to resistance against a hemipteran pest.

    Topics: Animals; Aphids; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; Ethylenes; Feeding Behavior; Fertility; Gene Expression Regulation, Plant; Indoles; MicroRNAs; Mutation; Oxylipins; Phloem; Plant Diseases; Prunus; Reproduction; Signal Transduction; Survival Analysis; Thiazoles; Up-Regulation

2013
A novel Arabidopsis-oomycete pathosystem: differential interactions with Phytophthora capsici reveal a role for camalexin, indole glucosinolates and salicylic acid in defence.
    Plant, cell & environment, 2013, Volume: 36, Issue:6

    Phytophthora capsici causes devastating diseases on a broad range of plant species. To better understand the interaction with its host plants, knowledge obtained from a model pathosystem can be instrumental. Here, we describe the interaction between P. capsici and Arabidopsis and the exploitation of this novel pathosystem to assign metabolic pathways involved in defence against P. capsici. Inoculation assays on Arabidopsis accessions with different P. capsici isolates revealed interaction specificity among accession-isolate combinations. In a compatible interaction, appressorium-mediated penetration was followed by the formation of invasive hyphae, haustoria and sporangia in leaves and roots. In contrast, in an incompatible interaction, P. capsici infection elicited callose deposition, accumulation of active oxygen species and cell death, resulting in early pathogen encasement in leaves. Moreover, Arabidopsis mutants with defects in salicylic acid signalling, camalexin or indole glucosinolates biosynthesis pathways displayed severely compromised resistance to P. capsici. It is anticipated that this model pathosystem will facilitate the genetic dissection of complex traits responsible for resistance against P. capsici.

    Topics: Arabidopsis; Cyclopentanes; Ethylenes; Glucosinolates; Host-Pathogen Interactions; Indoles; Oxylipins; Phenotype; Phytophthora; Plant Diseases; Salicylic Acid; Thiazoles

2013
Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis.
    Plant physiology, 2012, Volume: 159, Issue:1

    Phosphite (Phi), a phloem-mobile oxyanion of phosphorous acid (H(3)PO(3)), protects plants against diseases caused by oomycetes. Its mode of action is unclear, as evidence indicates both direct antibiotic effects on pathogens as well as inhibition through enhanced plant defense responses, and its target(s) in the plants is unknown. Here, we demonstrate that the biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) exhibits an unusual biphasic dose-dependent response to Phi after inoculation of Arabidopsis (Arabidopsis thaliana), with characteristics of indirect activity at low doses (10 mm or less) and direct inhibition at high doses (50 mm or greater). The effect of low doses of Phi on Hpa infection was nullified in salicylic acid (SA)-defective plants (sid2-1, NahG) and in a mutant impaired in SA signaling (npr1-1). Compromised jasmonate (jar1-1) and ethylene (ein2-1) signaling or abscisic acid (aba1-5) biosynthesis, reactive oxygen generation (atrbohD), or accumulation of the phytoalexins camalexin (pad3-1) and scopoletin (f6'h1-1) did not affect Phi activity. Low doses of Phi primed the accumulation of SA and Pathogenesis-Related protein1 transcripts and mobilized two essential components of basal resistance, Enhanced Disease Susceptibility1 and Phytoalexin Deficient4, following pathogen challenge. Compared with inoculated, Phi-untreated plants, the gene expression, accumulation, and phosphorylation of the mitogen-activated protein kinase MPK4, a negative regulator of SA-dependent defenses, were reduced in plants treated with low doses of Phi. We propose that Phi negatively regulates MPK4, thus priming SA-dependent defense responses following Hpa infection.

    Topics: Abscisic Acid; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Disease Resistance; DNA-Binding Proteins; Dose-Response Relationship, Drug; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mitogen-Activated Protein Kinases; Oomycetes; Oxylipins; Phosphites; Phosphorylation; Plant Diseases; Plant Immunity; Salicylic Acid; Scopoletin; Signal Transduction; Thiazoles

2012
Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens.
    The Plant journal : for cell and molecular biology, 2011, Volume: 66, Issue:5

    In plants, autophagy has been assigned 'pro-death' and 'pro-survival' roles in controlling programmed cell death associated with microbial effector-triggered immunity. The role of autophagy in basal immunity to virulent pathogens has not been addressed systematically, however. Using several autophagy-deficient (atg) genotypes, we determined the function of autophagy in basal plant immunity. Arabidopsis mutants lacking ATG5, ATG10 and ATG18a develop spreading necrosis upon infection with the necrotrophic fungal pathogen, Alternaria brassicicola, which is accompanied by the production of reactive oxygen intermediates and by enhanced hyphal growth. Likewise, treatment with the fungal toxin fumonisin B1 causes spreading lesion formation in atg mutant genotypes. We suggest that autophagy constitutes a 'pro-survival' mechanism that controls the containment of host tissue-destructive microbial infections. In contrast, atg plants do not show spreading necrosis, but exhibit marked resistance against the virulent biotrophic phytopathogen, Pseudomonas syringae pv. tomato. Inducible defenses associated with basal plant immunity, such as callose production or mitogen-activated protein kinase activation, were unaltered in atg genotypes. However, phytohormone analysis revealed that salicylic acid (SA) levels in non-infected and bacteria-infected atg plants were slightly higher than those in Col-0 plants, and were accompanied by elevated SA-dependent gene expression and camalexin production. This suggests that previously undetected moderate infection-induced rises in SA result in measurably enhanced bacterial resistance, and that autophagy negatively controls SA-dependent defenses and basal immunity to bacterial infection. We infer that the way in which autophagy contributes to plant immunity to different pathogens is mechanistically diverse, and thus resembles the complex role of this process in animal innate immunity.

    Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Autophagy; Autophagy-Related Protein 5; Autophagy-Related Proteins; Ethylenes; Fumonisins; Gene Expression Regulation, Plant; Genetic Complementation Test; Genetic Loci; Genetic Pleiotropy; Immunity, Innate; Indoles; Phosphoric Monoester Hydrolases; Plant Growth Regulators; Plant Leaves; Pseudomonas syringae; Salicylic Acid; Thiazoles

2011
Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns.
    The Plant cell, 2010, Volume: 22, Issue:3

    Despite the fact that roots are the organs most subject to microbial interactions, very little is known about the response of roots to microbe-associated molecular patterns (MAMPs). By monitoring transcriptional activation of beta-glucuronidase reporters and MAMP-elicited callose deposition, we show that three MAMPs, the flagellar peptide Flg22, peptidoglycan, and chitin, trigger a strong tissue-specific response in Arabidopsis thaliana roots, either at the elongation zone for Flg22 and peptidoglycan or in the mature parts of the roots for chitin. Ethylene signaling, the 4-methoxy-indole-3-ylmethylglucosinolate biosynthetic pathway, and the PEN2 myrosinase, but not salicylic acid or jasmonic acid signaling, play major roles in this MAMP response. We also show that Flg22 induces the cytochrome P450 CYP71A12-dependent exudation of the phytoalexin camalexin by Arabidopsis roots. The phytotoxin coronatine, an Ile-jasmonic acid mimic produced by Pseudomonas syringae pathovars, suppresses MAMP-activated responses in the roots. This suppression requires the E3 ubiquitin ligase COI1 as well as the transcription factor JIN1/MYC2 but does not rely on salicylic acid-jasmonic acid antagonism. These experiments demonstrate the presence of highly orchestrated and tissue-specific MAMP responses in roots and potential pathogen-encoded mechanisms to block these MAMP-elicited signaling pathways.

    Topics: Arabidopsis; Arabidopsis Proteins; Chitin; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Flagella; Glucans; Host-Pathogen Interactions; Indoles; N-Glycosyl Hydrolases; Oxylipins; Peptidoglycan; Plant Roots; Plants, Genetically Modified; Pseudomonas; RNA, Plant; Salicylic Acid; Signal Transduction; Thiazoles

2010
Arabidopsis histone methyltransferase SET DOMAIN GROUP8 mediates induction of the jasmonate/ethylene pathway genes in plant defense response to necrotrophic fungi.
    Plant physiology, 2010, Volume: 154, Issue:3

    As sessile organisms, plants have to endure a wide variety of biotic and abiotic stresses, and accordingly they have evolved intricate and rapidly inducible defense strategies associated with the activation of a battery of genes. Among other mechanisms, changes in chromatin structure are thought to provide a flexible, global, and stable means for the regulation of gene transcription. In support of this idea, we demonstrate here that the Arabidopsis (Arabidopsis thaliana) histone methyltransferase SET DOMAIN GROUP8 (SDG8) plays a crucial role in plant defense against fungal pathogens by regulating a subset of genes within the jasmonic acid (JA) and/or ethylene signaling pathway. We show that the loss-of-function mutant sdg8-1 displays reduced resistance to the necrotrophic fungal pathogens Alternaria brassicicola and Botrytis cinerea. While levels of JA, a primary phytohormone involved in plant defense, and camalexin, a major phytoalexin against fungal pathogens, remain unchanged or even above normal in sdg8-1, induction of several defense genes within the JA/ethylene signaling pathway is severely compromised in response to fungal infection or JA treatment in mutant plants. Both downstream genes and, remarkably, also upstream mitogen-activated protein kinase kinase genes MKK3 and MKK5 are misregulated in sdg8-1. Accordingly, chromatin immunoprecipitation analysis shows that sdg8-1 impairs dynamic changes of histone H3 lysine 36 methylation at defense marker genes as well as at MKK3 and MKK5, which normally occurs upon infection with fungal pathogens or methyl JA treatment in wild-type plants. Our data indicate that SDG8-mediated histone H3 lysine 36 methylation may serve as a memory of permissive transcription for a subset of defense genes, allowing rapid establishment of transcriptional induction.

    Topics: Alternaria; Arabidopsis; Arabidopsis Proteins; Botrytis; Cyclopentanes; Ethylenes; Gene Expression Regulation, Plant; Histone Methyltransferases; Histone-Lysine N-Methyltransferase; Histones; Indoles; Methylation; Oxylipins; Plant Diseases; Plant Growth Regulators; Plant Immunity; Promoter Regions, Genetic; RNA, Plant; Thiazoles

2010
Genetic analysis of acd6-1 reveals complex defense networks and leads to identification of novel defense genes in Arabidopsis.
    The Plant journal : for cell and molecular biology, 2009, Volume: 58, Issue:3

    Pathogen infection leads to the activation of defense signaling networks in plants. To study these networks and the relationships between their components, we introduced various defense mutations into acd6-1, a constitutive gain-of-function Arabidopsis mutant that is highly disease resistant. acd6-1 plants show spontaneous cell death, reduced stature, and accumulate high levels of camalexin (an anti-fungal compound) and salicylic acid (SA; a signaling molecule). Disruption of several defense genes revealed that in acd6-1, SA levels/signaling were positively correlated with the degree of disease resistance and defense gene expression. Salicylic acid also modulates the severity of cell death. However, accumulation of camalexin in acd6-1 is largely unaffected by reducing the level of SA. In addition, acd6-1 shows ethylene- and jasmonic acid-mediated signaling that is antagonized and therefore masked by the presence of SA. Mutant analysis revealed a new relationship between the signaling components NPR1 and PAD4 and also indicated that multiple defense pathways were required for phenotypes conferred by acd6-1. In addition, our data confirmed that the size of acd6-1 was inversely correlated with SA levels/signaling. We exploited this unique feature of acd6-1 to identify two genes disrupted in acd6-1 suppressor (sup) mutants: one encodes a known SA biosynthetic component (SID2) and the other encodes an uncharacterized putative metalloprotease (At5g20660). Taken together, acd6-1 is a powerful tool not only for dissecting defense regulatory networks but also for discovering novel defense genes.

    Topics: Ankyrins; Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Ethylenes; Genes, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Mutagenesis, Insertional; Mutation; Oxylipins; Salicylic Acid; Signal Transduction; Thiazoles

2009
Layers of defense responses to Leptosphaeria maculans below the RLM1- and camalexin-dependent resistances.
    The New phytologist, 2009, Volume: 182, Issue:2

    Plants have evolved different defense components to counteract pathogen attacks. The resistance locus resistance to Leptosphaeria maculans 1 (RLM1) is a key factor for Arabidopsis thaliana resistance to L. maculans. The present work aimed to reveal downstream defense responses regulated by RLM1. Quantitative assessment of fungal colonization in the host was carried out using quantitative polymerase chain reaction (qPCR) and GUS expression analyses, to further characterize RLM1 resistance and the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in disease development. Additional assessments of A. thaliana mutants were performed to expand our understanding of this pathosystem. Resistance responses such as lignification and the formation of vascular plugs were found to occur in an RLM1-dependent manner, in contrast to the RLM1-independent increase in reactive oxygen species at the stomata and hydathodes. Analyses of mutants defective in hormone signaling in the camalexin-free rlm1(Ler)pad3 background revealed a significant influence of JA and ET on symptom development and pathogen colonization. The overall results indicate that the defense responses of primary importance induced by RLM1 are all associated with physical barriers, and that responses of secondary importance involve complex cross-talk among SA, JA and ET. Our observations further suggest that ET positively affects fungal colonization.

    Topics: Arabidopsis; Arabidopsis Proteins; Cyclopentanes; Cytochrome P-450 Enzyme System; Ethylenes; Fungi; Gene Expression Regulation, Plant; Genes, Plant; Host-Pathogen Interactions; Indoles; Lignin; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Thiazoles; Virulence Factors

2009
Glycerol-3-phosphate levels are associated with basal resistance to the hemibiotrophic fungus Colletotrichum higginsianum in Arabidopsis.
    Plant physiology, 2008, Volume: 147, Issue:4

    Glycerol-3-phosphate (G3P) is an important component of carbohydrate and lipid metabolic processes. In this article, we provide evidence that G3P levels in plants are associated with defense to a hemibiotrophic fungal pathogen Colletotrichum higginsianum. Inoculation of Arabidopsis (Arabidopsis thaliana) with C. higginsianum was correlated with an increase in G3P levels and a concomitant decrease in glycerol levels in the host. Plants impaired in utilization of plastidial G3P (act1) accumulated elevated levels of pathogen-induced G3P and displayed enhanced resistance. Furthermore, overexpression of the host GLY1 gene, which encodes a G3P dehydrogenase (G3Pdh), conferred enhanced resistance. In contrast, the gly1 mutant accumulated reduced levels of G3P after pathogen inoculation and showed enhanced susceptibility to C. higginsianum. Unlike gly1, a mutation in a cytosolic isoform of G3Pdh did not alter basal resistance to C. higginsianum. Furthermore, act1 gly1 double-mutant plants were as susceptible as the gly1 plants. Increased resistance or susceptibility of act1 and gly1 plants to C. higginsianum, respectively, was not due to effects of these mutations on salicylic acid- or ethylene-mediated defense pathways. The act1 mutation restored a wild-type-like response in camalexin-deficient pad3 plants, which were hypersusceptible to C. higginsianum. These data suggest that G3P-associated resistance to C. higginsianum occurs independently or downstream of the camalexin pathway. Together, these results suggest a novel and specific link between G3P metabolism and plant defense.

    Topics: Arabidopsis; Colletotrichum; Cytosol; Ethylenes; Glycerol; Glycerolphosphate Dehydrogenase; Glycerophosphates; Indoles; Plants, Genetically Modified; Protein Isoforms; Reactive Oxygen Species; Salicylic Acid; Thiazoles

2008
Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis.
    The Journal of biological chemistry, 2008, Oct-03, Volume: 283, Issue:40

    Mitogen-activated protein kinase (MAPK) cascades play important roles in regulating plant growth, development, and responses to various environmental stimuli. We demonstrate that MKK9, an MKK, is an upstream activator of the MPKs MPK3 and MPK6 both in vitro and in planta. Expression of active MKK9 protein in transgenic plants induces the synthesis of ethylene and camalexin through the activation of the endogenous MPK3 and MPK6 kinases. As a consequence, transcription of multiple genes responsible for ethylene biosynthesis, ethylene responses, and camalexin biosynthesis is coordinately up-regulated. The activation of MKK9 inhibits hypocotyl elongation in the etiolated seedlings. MKK9-mediated effects on hypocotyl elongation were blocked by the ethylene biosynthesis inhibitor, aminoethoxyvinylglycine, and ethylene receptor antagonist, Ag(+). Expression of active MKK9 protein enhances the sensitivity of transgenic seedlings to salt stress, whereas loss of MKK9 activity reduces salt sensitivity indicating a role for MKK9 in the salt stress response. The results reported here reveal that the MKK9-MPK3/MPK6 cascade participates in the regulation of the biosynthesis of ethylene and camalexin and may be an important axis in the stress responses of Arabidopsis.

    Topics: Arabidopsis; Arabidopsis Proteins; Ethylenes; Glycine; Hypocotyl; Indoles; MAP Kinase Signaling System; Mitogen-Activated Protein Kinase Kinases; Mitogen-Activated Protein Kinases; Seedlings; Silver; Sodium Chloride; Thiazoles

2008
Characterisation of an Arabidopsis-Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling.
    The Plant journal : for cell and molecular biology, 2004, Volume: 37, Issue:1

    Out of 168 Arabidopsis accessions screened with isolates of Leptosphaeria maculans, one (An-1) showed clear disease symptoms. In order to identify additional components involved in containment of L. maculans in Arabidopsis, a screen for L. maculans-susceptible (lms) mutants was performed. Eleven lms mutants were isolated, which displayed differential susceptibility responses to L. maculans. lms1 was crossed with Columbia (Col-0) and Ws-0, and mapping data for both populations showed the highest linkage to a region on chromosome 2. Reduced levels of PR-1 and PDF1.2 expression were found in lms1 compared to wild-type plants 48 h after pathogen inoculation. In contrast, the lms1 mutant displayed upregulation of either marker gene upon chemical treatment, possibly as an effect of an altered ethylene (ET) response. To assess the contribution of different defence pathways, genotypes implicated in salicylic acid (SA) signalling plants expressing the bacterial salicylate hydroxylase (nahG) gene, non-expressor of PR1 (npr1)-1 and phytoalexin-deficient (pad4-1), jasmonic acid (JA) signalling (coronatine insensitive (coi)1-16, enhanced disease susceptibility (eds)8-1 and jasmonic acid resistant (jar)1-1) and ET signalling (eds4-1, ethylene insensitive (ein)2, ein3-1 and ethylene resistant (etr)1-1) were screened. All the genotypes screened were as resistant as wild-type plants, demonstrating the dispensability of the pathways in L. maculans resistance. When mutants implicated in cell death responses were assayed, responsive to antagonist 1 (ran1)-1 exhibited a weak susceptible phenotype, whereas accelerated cell death (acd)1-20 showed a rapid lesion development. Camalexin is only partially responsible for L. maculans containment in Arabidopsis, as pad3-1 and enhanced susceptibility to Alternaria (esa)1 clearly showed a susceptible response while wild-type levels of camalexin were present in An-1 and lms1. The data presented point to the existence of multiple defence mechanisms controlling the containment of L. maculans in Arabidopsis.

    Topics: Arabidopsis; Ascomycota; Copper Sulfate; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Mutation; Oxylipins; Plant Diseases; Plant Growth Regulators; Salicylic Acid; Signal Transduction; Silver Nitrate; Thiazoles

2004
RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum.
    Molecular plant-microbe interactions : MPMI, 2004, Volume: 17, Issue:7

    When challenged with the crucifer pathogen Colletotrichum higginsianum, Arabidopsis thaliana ecotype Columbia (Col-0) was colonized by the fungus within 2 to 3 days, developing brown necrotic lesions surrounded by a yellow halo. Lesions spread from the inoculation site within 3 to 4 days, and subsequently continued to expand until they covered the entire leaf. Electron microscopy confirmed that C. higginsianum is a hemibiotroph on Arabidopsis, feeding initially on living cells as a biotroph before switching to a necrotrophic mode of growth. A collection of 37 ecotypes of Arabidopsis varied in their responses to infection by C. higginsianum. The ecotype Eil-0 was highly resistant, with symptoms limited to necrotic flecking and with only very limited fungal colonization. Analyses suggested that the hypersensitive response and reactive oxygen species may be important in this defense response. Expression analyses with cDNA microarrays indicated that the defense reaction depends primarily on the jasmonic acid- and ethylene-dependent signaling pathways and, to a lesser extent, on the salicylate-dependent pathway. Crosses between the Eil-0 and Col-0 ecotypes suggested that the resistance in Eil-0 was dominant and was conferred by a single locus, which we named RCH1. RCH1 is the first resistance locus to be identified from Arabidopsis against the hemibiotrophic fungus genus Colletotrichum.

    Topics: Arabidopsis; Arabidopsis Proteins; Colletotrichum; Cyclopentanes; Ethylenes; Immunity, Innate; Indoles; Microscopy, Electron; Oligonucleotide Array Sequence Analysis; Oxylipins; Phylogeny; Plant Diseases; Plant Growth Regulators; Plant Leaves; Reactive Oxygen Species; Salicylic Acid; Signal Transduction; Thiazoles

2004
Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4.
    The Plant journal : for cell and molecular biology, 2003, Volume: 35, Issue:2

    Salicylic acid (SA) is an important regulator of plant defense responses, and a variety of Arabidopsis mutants impaired in resistance against bacterial and fungal pathogens show defects in SA accumulation, perception, or signal transduction. Nevertheless, the role of SA-dependent defense responses against necrotrophic fungi is currently unclear. We determined the susceptibility of a set of previously identified Arabidopsis mutants impaired in defense responses to the necrotrophic fungal pathogen Botrytis cinerea. The rate of development of B. cinerea disease symptoms on primary infected leaves was affected by responses mediated by the genes EIN2, JAR1, EDS4, PAD2, and PAD3, but was largely independent of EDS5, SID2/ICS1, and PAD4. Furthermore, plants expressing a nahG transgene or treated with a phenylalanine ammonia lyase (PAL) inhibitor showed enhanced symptoms, suggesting that SA synthesized via PAL, and not via isochorismate synthase (ICS), mediates lesion development. In addition, the degree of lesion development did not correlate with defensin or PR1 expression, although it was partially dependent upon camalexin accumulation. Although npr1 mutant leaves were normally susceptible to B. cinerea infection, a double ein2 npr1 mutant was significantly more susceptible than ein2 plants, and exogenous application of SA decreased B. cinerea lesion size through an NPR1-dependent mechanism that could be mimicked by the cpr1 mutation. These data indicate that local resistance to B. cinerea requires ethylene-, jasmonate-, and SA-mediated signaling, that the SA affecting this resistance does not require ICS1 and is likely synthesized via PAL, and that camalexin limits lesion development.

    Topics: Arabidopsis; Arabidopsis Proteins; Botrytis; Carboxylic Ester Hydrolases; Cyclopentanes; Cytochrome P-450 Enzyme System; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Intramolecular Transferases; Membrane Transport Proteins; Mixed Function Oxygenases; Mutation; Nucleotidyltransferases; Oxylipins; Phenylalanine Ammonia-Lyase; Plant Diseases; Plant Proteins; Receptors, Cell Surface; Salicylic Acid; Signal Transduction; Thiazoles

2003
Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of necrotrophic fungal pathogens, shows a distorted induction of defense responses by reactive oxygen generating compounds.
    The Plant journal : for cell and molecular biology, 2002, Volume: 29, Issue:2

    An Arabidopsis thaliana mutant, esa1, that shows enhanced susceptibility to the necrotrophic pathogens Alternaria brassicicola, Botrytis cinerea and Plectosphaerella cucumerina, but has wild-type levels of resistance to the biotrophic pathogens Pseudomonas syringae pv. tomato and Peronospora parasitica. The enhanced susceptibility towards necrotrophic pathogens correlated with a delayed induction of phytoalexin accumulation and delayed induction of the plant defensin gene PDF1.2 upon inoculation with pathogens. Two reactive oxygen generating compounds, paraquat and acifluorfen, were found to cause induction of both phytoalexin accumulation and PDF1.2 expression in wild-type plants, but this induction was almost completely abolished in esa1. This finding suggests that esa1 may somehow be involved in transduction of signals generated by reactive oxygen species.

    Topics: Alternaria; Arabidopsis; Cyclopentanes; Defensins; Ethylenes; Gene Expression Regulation, Plant; Immunity, Innate; Indoles; Mutation; Nitrobenzoates; Oxylipins; Paraquat; Phytoalexins; Plant Diseases; Plant Extracts; Plant Proteins; Reactive Oxygen Species; Salicylates; Sesquiterpenes; Terpenes; Thiazoles

2002
Characterization of an Arabidopsis-Phytophthora pathosystem: resistance requires a functional PAD2 gene and is independent of salicylic acid, ethylene and jasmonic acid signalling.
    The Plant journal : for cell and molecular biology, 2001, Volume: 28, Issue:3

    Arabidopsis accessions were screened with isolates of Phytophthora porri originally isolated from other crucifer species. The described Arabidopsis-Phytophthora pathosystem shows the characteristics of a facultative biotrophic interaction similar to that seen in agronomically important diseases caused by Phytophthora species. In susceptible accessions, extensive colonization of the host tissue occurred and sexual and asexual spores were formed. In incompatible combinations, the plants reacted with a hypersensitive response (HR) and the formation of papillae at the sites of attempted penetration. Defence pathway mutants such as jar1 (jasmonic acid-insensitive), etr1 (ethylene receptor mutant) and ein2 (ethylene-insensitive) remained resistant towards P. porri. However, pad2, a mutant with reduced production of the phytoalexin camalexin, was hyper-susceptible. The accumulation of salicylic acid (SA) and PR1 protein was strongly reduced in pad2. Surprisingly, this lack of SA accumulation does not appear to be the cause of the hyper-susceptibility because interference with SA signalling in nahG plants or sid2 or npr1 mutants had only a minor effect on resistance. In addition, the functional SA analogue benzothiadiazol (BTH) did not induce resistance in susceptible plants including pad2. Similarly, the complete blockage of camalexin biosynthesis in pad3 did not cause susceptibility. Resistance of Arabidopsis against P. porri appears to depend on unknown defence mechanisms that are under the control of PAD2.

    Topics: Arabidopsis; Cyclopentanes; Ethylenes; Genes, Plant; Indoles; Mutation; Oxylipins; Phytophthora; Salicylic Acid; Signal Transduction; Thiazoles

2001
Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen.
    The Plant journal : for cell and molecular biology, 2000, Volume: 24, Issue:2

    To identify components of the defense response that limit growth of a biotrophic fungal pathogen, we isolated Arabidopsis mutants with enhanced disease susceptibility to Erysiphe orontii. Our initial characterization focused on three mutants, eds14, eds15, and eds16. None of these is considerably more susceptible to a virulent strain of the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm). All three mutants develop a hypersensitive response when infiltrated with Psm expressing the avirulence gene avrRpt2, which activates resistance via the LZ-NBS/LRR resistance protein encoded by RPS2. The growth of Psm(avrRpt2), while somewhat greater in the mutants than in the wild type, is less than growth of the isogenic virulent strain. These results indicate that resistance mediated via LZ-NBS/LRR R genes is functional. Analysis of the growth of avirulent Peronospora parasitica strains showed that the resistance pathway utilized by TIR-NBS/LRR R genes is also operative in all three mutants. Surprisingly, only eds14 and eds16 were more susceptible to Erysiphe cichoracearum. Analysis of the expression profiles of PR-1, BGL2, PR-5 and PDF1.2 in eds14, eds15, and eds16 revealed differences from the wild type for all the lines. In contrast, these mutants were not significantly different from wild type in the deposition of callose at sites of E. orontii penetration. All three mutants have reduced levels of salicylic acid after infection. eds16 was mapped to the lower arm of chromosome I and found by complementation tests to be allelic to the salicylic acid-deficient mutant sid2.

    Topics: Alleles; Arabidopsis; Ascomycota; Chromosome Mapping; Chromosome Segregation; Cyclopentanes; Ethylenes; Genes, Plant; Genetic Complementation Test; Genetic Predisposition to Disease; Glucans; Indoles; Mutation; Oxylipins; Phenotype; Plant Diseases; Plant Leaves; Salicylic Acid; Signal Transduction; Thiazoles

2000
Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola.
    The Plant journal : for cell and molecular biology, 1999, Volume: 19, Issue:2

    The phytoalexin-deficient Arabidopsis mutant pad3-1, which is affected in the production of the indole-type phytoalexin camalexin, has previously been shown not to display altered susceptibility to either the bacterium Pseudomonas syringae (Glazebrook & Ausubel 1994; Proc. Natl. Acad. Sci. USA, 91: 8955-8959) or the biotrophic fungi Peronospora parasitica (Glazebrook et al. 1997; Genetics, 146: 381-392) and Erysiphe orontii (Reuber et al. 1998; Plant J. 16: 473-485). We now show that this mutant is markedly more susceptible than its wild-type parental line to infection by the necrotrophic fungus Alternaria brassicicola, but not to Botrytis cinerea. A strong camalexin response was elicited in wild-type plants inoculated with either Alternaria brassicicola or Botrytis cinerea, whereas no camalexin could be detected in pad3-1 challenged with these fungi. Hence, PAD3 appears to be a key determinant in resistance to at least A. brassicicola. The induction of salicylate-dependent and jasmonate/ethylene-dependent defense genes was not reduced in Alternaria-challenged pad3-1 plants compared to similarly treated wild-type plants. Camalexin production could not be triggered by exogenous application of either salicylate, ethylene or jasmonate and was not, or not strongly, reduced in mutants with defects in perception of these defense-related signal molecules. Camalexin-production appears to be controlled by a pathway that exhibits little cross-talk with salicylate-, ethylene- and jasmonate-dependent signalling events.

    Topics: Alternaria; Anti-Infective Agents; Antifungal Agents; Arabidopsis; Botrytis; Cyclopentanes; Defensins; Disease Susceptibility; Ethylenes; Gene Expression Regulation, Plant; Indoles; Mutation; Oxylipins; Phytoalexins; Plant Diseases; Plant Extracts; Plant Growth Regulators; Plant Proteins; Salicylic Acid; Sesquiterpenes; Terpenes; Thiazoles

1999