calyculin-a and 8-chloro-cyclic-adenosine-monophosphate

calyculin-a has been researched along with 8-chloro-cyclic-adenosine-monophosphate* in 2 studies

Other Studies

2 other study(ies) available for calyculin-a and 8-chloro-cyclic-adenosine-monophosphate

ArticleYear
Troponin I phosphorylation in spontaneously hypertensive rat heart: effect of beta-adrenergic stimulation.
    The American journal of physiology, 1997, Volume: 273, Issue:3 Pt 2

    We compared baseline and protein kinase A (PKA)-dependent troponin I (TnI) phosphorylation in 32Pi-labeled left ventricular myocytes from hearts of 26-wk spontaneously hypertensive rats (SHR) and Wistar-Kyoto controls (WKY). TnI phosphorylation was normalized to myosin light chain 2 phosphorylation, which was invariant. There was no difference in baseline TnI phosphorylation in SHR and WKY, but stimulation with isoproterenol, norepinephrine plus prazosin, forskolin, chloroadenosine 3',5'-cyclic monophosphate, or 3-isobutyl-1-methylxanthine caused a greater increase in TnI phosphorylation in the SHR than in the WKY. This was observed both in the presence and absence of the phosphatase inhibitor calyculin A; thus the differences in TnI phosphorylation between SHR and WKY are not due to decreased phosphatase activity in the SHR. After stimulation of the beta-adrenergic pathway, phospholamban phosphorylation was not different in SHR and WKY, indicating that the observed differences may be specific for PKA phosphorylation of TnI. The increased PKA-dependent TnI phosphorylation in the SHR resulted in decreased Ca2+ sensitivity of actomyosin adenosinetriphosphatase activity as compared with the WKY. We conclude that increased PKA-dependent TnI phosphorylation in the SHR may contribute to the impaired response to sympathetic stimulation.

    Topics: 1-Methyl-3-isobutylxanthine; 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 8-Bromo Cyclic Adenosine Monophosphate; Adrenergic beta-Agonists; Animals; Calcium; Calcium-Binding Proteins; Cells, Cultured; Colforsin; Cyclic AMP-Dependent Protein Kinases; Electric Stimulation; Enzyme Inhibitors; Heart; Heart Ventricles; Hypertension; Isoproterenol; Marine Toxins; Myocardial Contraction; Myocardium; Myosin Light Chains; Norepinephrine; Oxazoles; Phosphoprotein Phosphatases; Phosphorylation; Prazosin; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Troponin I

1997
8-Chloro-cAMP induces apoptotic cell death in a human mammary carcinoma cell (MCF-7) line.
    British journal of cancer, 1995, Volume: 72, Issue:5

    8-Cl-cAMP and 8-NH2-cAMP induced MCF-7 cell death. The type(s) of cell death were studied in more detail and compared with the cell death type (apoptosis) induced by okadaic acid, an inhibitor of serine/threonine phosphatases. By morphological criteria dying cells showed loss of cell-cell interactions and microvilli, condensation of nuclear chromatin and segregation of cytoplasmic organelles. By in situ nick end-labelling, using digoxigenin-conjugated dUTP as probe, a large fraction of 8-Cl-cAMP, 8-NH2-cAMP and 8-Cl-adenosine-exposed cells stained positively in the advanced stages of death. In the early phase of chromatin condensation the cells stained negatively. Specific (internucleosomal) DNA fragmentation was not observed. The MCF-7 cell death induced by 8-Cl-cAMP and 8-NH2-cAMP was not mediated by activation of the cAMP kinase since more stable cAMP analogues (8-CPT-cAMP and N6-benzoyl-cAMP) or forskolin failed to induce death. Furthermore, 8-Cl-cAMP action was counteracted by adenosine deaminase and 3-isobutyl-1-methylxanthine, and mimicked by 8-Cl-adenosine, a major metabolite of 8-Cl-cAMP. It is concluded that 8-Cl- and 8-NH2-cAMP can induce morphological and biochemical effects resembling apoptotic cell death in MCF-7 cells through their conversion into potent cytotoxic metabolite(s).

    Topics: 1-Methyl-3-isobutylxanthine; 8-Bromo Cyclic Adenosine Monophosphate; Adenocarcinoma; Adenosine Deaminase; Amino Acid Sequence; Apoptosis; Biotransformation; Breast Neoplasms; Chromatin; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; DNA Damage; Ethers, Cyclic; Female; Humans; Marine Toxins; Microvilli; Molecular Sequence Data; Necrosis; Okadaic Acid; Organelles; Oxazoles; Phosphoprotein Phosphatases

1995