calyculin-a has been researched along with 2-chloro-5-hydroxyphenylglycine* in 1 studies
1 other study(ies) available for calyculin-a and 2-chloro-5-hydroxyphenylglycine
Article | Year |
---|---|
Role of protein phosphatase 2A in mGluR5-regulated MEK/ERK phosphorylation in neurons.
The regulation of protein phosphorylation requires coordinated interaction between protein kinases and protein phosphatases (PPs). Recent evidence has shown that the Galphaq-protein-coupled metabotropic glutamate receptor (mGluR) 5 up-regulates phosphorylation of MAPK/ERK1/2. However, signaling mechanisms linking mGluR5 to ERK are poorly understood. In this study, roles of a major serine/threonine PP, PP2A, in this event were evaluated in cultured neurons. We found that the PP1/2A inhibitors okadaic acid and calyculin A mimicked the effect of the mGluR5 agonists (RS)-3,5-dihydroxyphenylglycine and (RS)-2-chloro-5-hydroxyphenylglycine in facilitating phosphorylation of ERK1/2 and its upstream kinase, MEK1/2, in a PP2A-dependent but not PP1-dependent manner. Co-administration of either inhibitor with an mGluR5 agonist produced additive phosphorylation of ERK1/2. Enzymatic assays showed a basal level of phosphatase activity of PP2A under normal conditions, and activation of mGluR5 selectively inhibited PP2A, but not PP1, activity. In addition, a physical association of the cytoplasmic C terminus of mGluR5 with PP2A was observed, and ligand activation of mGluR5 reduced mGluR5-PP2A binding. Additional mechanistic studies revealed that mGluR5 activation increased tyrosine (Tyr307) phosphorylation of PP2A, which was dependent on activation of a p60c-Src family tyrosine kinase, but not the epidermal growth factor receptor tyrosine kinase and resulted in dissociation of PP2A from mGluR5 and reduced PP2A activity. Together, we have identified a novel, mGluR5-triggered signaling mechanism involving use- and Src-dependent inactivation of PP2A, which contributes to mGluR5 activation of MEK1/2 and ERK1/2. Topics: Animals; Blotting, Western; Brain; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Glycine; Immunoprecipitation; MAP Kinase Kinase 1; Marine Toxins; Microscopy, Confocal; Microscopy, Fluorescence; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Neurons; Okadaic Acid; Oxazoles; Peptides; Phenylacetates; Phosphoprotein Phosphatases; Phosphorylation; Protein Phosphatase 2; Protein Structure, Tertiary; Protein-Tyrosine Kinases; Rats; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Resorcinols; Serine; Signal Transduction; Threonine; Time Factors; Up-Regulation | 2005 |